Fakultät für Chemieingenieurwesen und Verfahrenstechnik ¦ Engler-Bunte-Institut ¦ English ¦ Impressum ¦ Datenschutz ¦ KIT
Chemischer
Gleichgewichtsrechner

Probieren Sie auf dieser Seite unser Programm für die Berechnung des thermodynamischen Gleichgewichtes einer Gasmischung
mehr ...

Kontakt

Engler-Bunte-Ring 7
76131 Karlsruhe 

Gebäude 40.13.I 

Tel: +49(0)721 608-42571
Fax: +49(0)721 608-47770

E-Mail: Sekretariat
Link zur Seite:
Kooperationspartner:
Bachelor- und Masterarbeiten

Aktuelle Angebote für das Anfertigen von Bachelor- und Masterarbeiten finden sie auf der folgenden Seite.
mehr ...

Monolithische Schäume

Offenporige Schäume sind monolithische, starre Netzstrukturen aus verbundenen Stegen, die von einem kontinuierliche, fluiddurchlässigen Hohlraum durchdrungen werden. Feste Schwämme weisen aufgrund ihrer interessanten Eigenschaften ein großes Anwendungspotential in der Verfahrenstechnik auf, das bisher nicht erschlossen wurde.

Zwar finden sich in der Literatur Einzelbeispiele für verfahrenstechnische Anwendungen, jedoch fehlen noch die quantitativen Bewertungskriterien für den sinnvollen Einsatz dieser Strukturen und für den Vergleich mit herkömmlichen Schüttungen, Packungen und Einbauten. Eine wesentliche Ursache dafür sind Defizite im Verständnis und in der quantitativen Beschreibung von Materialauswahl und zur Abschätzung der Einsatzgrenzen und Lebensdauern unter mechanischer und thermischer Beanspruchung.

In der von der Deutschen Forschungsgemeinschaft (DFG) geförderten Forschergruppe 583 sind materialwissenschaftliche Studien und grundlegende Untersuchungen zur Impuls-, Stoff- und Wärmeübertragung in den festen Schwämmen verbunden werden mit der Untersuchung ausgewählter, neuer Beispiele für ihren Einsatz in katalytischen Reaktoren, Filtern, Brennern und statischen Mischern. In einer koordinierten Zusammenarbeit sollen die fehlenden theoretischen Voraussetzungen für die modellgestützte, quantitative Bewertung der Anwendungspotentiale und für die Auslegung von verfahrenstechischen Apparaten geschaffen und angewandt werden.

 


 

Im Rahmen dieses Schwerpunkts werden folgende Forschungsprojekte bearbeitet:


Fortschrittliche direkte Biogas-Brennstoff Einheit für die robuste und kostensparende dezentrale Wasserstofferzeugung
(BIOROBURplus)
BioROBURplus baut auf die Ergebnisse des FCH JU BioROBUR Projektes auf (Direkter, oxidativer Biogas-Dampfreformer) um eine vorkommerzielle Brennstoffverarbeitungseinheit, die 50 mN3 (d.h. 107 kg/Tag) 99.0%-igen Wasserstoff aus verschiedenen Biogastypen (Deponie, anaerobe Verarbeitung organischer Abfälle, anaerobe Verarbeitung von Abwasserschlämmen) auf kostensparende Weise erzeugt. Die Energieeffizienz der Biogasumwandlung zu H2 wird aufgrund folgender technologischer Neuerungen 80% auf HHV-Basis übersteigen:
  • erhöhte interne Wärmerezirkulation ermöglicht die Minimierung der Luftzufuhr zum Reformer aufgrund strukturierter zellulärer Keramiken die mit stabilen und recyclebaren Edelmetallkatalysatoren, die eine erhöhte Verkokungsresistenz aufweisen, beschichtet sind.
  • eine angepasste Druck-Temperatur Swing Adsorption (PTSA), die in der Lage ist Rückführung von Wärme sowohl unter Druck als auch bei niederen Temperaturen zu gewährleisten um die H2 Abtrennung von CO2 und N2 zu ermöglichen.
  • ein rekuperativer Brenner der auf Basis zellulärer Keramiken der in der Lage ist die niederkalorischen PTSA-Produktgase zu verwenden und so Wärme für die oben genannten Prozesschritte zur Verfügung zu stellen.
 
Gestaltungsvorschlag für den BioRoburplus Produktgasbrenner

Die ergänzend in BioROBUR bereits entwickelten technologischen Inovationen (fortschrittliches modulares System für die Luft/Dampf-Kontrolle zur Begrenzung der Verkokung; catalytic trap hosting WGS functionality and allowing decomposition of incomplete reforming products; etc.) werden es erlauben, alle Projektziele innerhalb des Projektrahmens zu erfüllen.
 
Poster zu Zentrum Energie Jahrestagung

Energy Efficient Coil Coating Process
(ECCO)

Coil Coating ist ein wichtiger industrieller Prozess, der in einem großen Teil der industriellen Stahl- und Metalllegierungsproduktion eingesetzt wird und mit großen Anlagen und großem Primärenergieverbrauch verbunden ist. Ein großer Teil der Gesamtanlagengröße und des Energiebedarfs von Bandbeschichtungsanlagen ist mit dem Trocknungs- bzw. Aushärteprozess innerhalb eines Aushärteofens verbunden, einem Engpass bei der Erhöhung der Produktionskapazität. Bei diesem Trocknungs-/Härteprozess werden organische Lösungsmittel aus dem aufgetragenen flüssigen Beschichtungsfilm verdampft und da sie brennbar sind, müssen die üblicherweise eingesetzten Härteöfen mit Konvektionslufttrocknungstechnik aus Sicherheitsgründen weit unterhalb der Explosionsgrenze (LOW) betrieben werden. ECCO bietet eine neuartige Lösung für den Aushärteofenbetrieb an, die nicht nur die Kompaktheit und energetische Effizienz des Systems drastisch erhöhen kann, sondern durch einen brennstoffflexiblen, modularen und potenziell energetisch selbsttragenden Prozess zu einer erhöhten Produktionsflexibilität führt. Die Hauptidee besteht darin, das Metallband durch IR-Strahlung zu erwärmen und den Aushärteofen weit über die obere Explosionsgrenze (UEL) hinaus zu betreiben, um den Trocknungs- und Aushärtungsprozess in einer Atmosphäre durchzuführen, die hauptsächlich aus Lösemitteldämpfen besteht, die als Brennstoff in IR-Strahlungsporenbrennern verwendet werden.

Abbildung 1: Vergleich von herkömmlichen Trocknungsprozessen zu ECCO Konzept.

Diese Lösung führt zu einer Reduzierung der Größe/Produktionskapazität von 70% und zu einer Reduzierung der Investitions- und Betriebskosten um jeweils mindestens 40%. Ausgehend von den bisherigen Aktivitäten bei TRL 4 ist ein interdisziplinärer Ansatz vorgesehen, der auf fortschrittlichen Werkstoffen, Verbrennungstechnik und Prognosewerkzeugen für die Systemauslegung/-optimierung aufbaut, um diese Technologie unter aktiver Beteiligung der wichtigsten industriellen Akteure in TRL 6 einzubringen und einen Prototypenofen in industriell relevanter Größe und Umgebung zu realisieren.

Video 1: Lösemittel während Zündung in Explosionsprüfstand zur Ermittlung der Sauerstoffgrenzkonzentartion.