Fakultät für Chemieingenieurwesen und Verfahrenstechnik ¦ Engler-Bunte-Institut ¦ English ¦ Impressum ¦ Datenschutz ¦ KIT
Chemischer
Gleichgewichtsrechner

Probieren Sie auf dieser Seite unser Programm für die Berechnung des thermodynamischen Gleichgewichtes einer Gasmischung
mehr ...

Kontakt

Engler-Bunte-Ring 7
76131 Karlsruhe 

Gebäude 40.13.I 

Tel: +49(0)721 608-42571
Fax: +49(0)721 608-47770

E-Mail: Sekretariat
Link zur Seite:
Kooperationspartner:
Bachelor- und Masterarbeiten

Aktuelle Angebote für das Anfertigen von Bachelor- und Masterarbeiten finden sie auf der folgenden Seite.
mehr ...

Kraftwerksverbrennung
In Kraftwerken findet eine Umwandlung von chemisch oder nuklear gebundener Energie in elektrische und/oder thermische Energie (zur Wärmenutzung) statt. Bei der Nutzung von chemisch gebundener Energie wird überwiegend die Verbrennung fossiler Stoffe, aber auch von Abfall oder Biomasse genutzt.

Ein grosser Anteil der Stromproduktion in Deutschland wird durch die Verbrennung von Steinkohle, Braunkohle und Ergdas durchgeführt (siehe z.B.:AG Energiebilanzen e.V.).

 

Renewable Power Generation by Solar Particle Receiver Driven Sulphur Storage Cycle
(PEGASUS)
In PEGASUS wird ein neues Verfahren für die Elektrizitätserzeugung auf Basis erneuerbarer Energie untersucht. Dieses Verfahren kombiniert die Technologie des konzentrierenden Energieeintrags aus Sonnenenergie durch einen Kollektor auf Basis einer Partikelzentrifuge mit einem Energiespeichersystem auf Schwefelbasis. Der vorgeschlagene Prozess verbindet strömende Partikel als Wärmeübertragermedium, die zusätzlich als direktes thermisches Speichermedium verwendet werden können, mit der indirekten thermochemischen Speicherung von Sonnenenergie in festem Schwefel. Dadurch wird die Einbindung eines Sonnenkraftwerks als regenerativer Stromerzeuger im 24-Stunden Betrieb ermöglicht.

Prozessschema des solaren Schwefelkreisprozesses / Bildquelle: DLR

Das übergeordnete Ziel von PEGASUS ist die Entwicklung und Demonstration eines innovativen Sonnenturm Systems das auf einem Kollektor mit festen Partikeln basiert in Kombination mit einem thermochemischen Speichersystem für Sonnenenergie auf Grundlage von elementarem Schwefel.  So soll eine verlässliche Stromerzeugung bei signifikanter Kostenreduktion im Vergleich zu aktuellen Konzepten ermöglicht werden. Die Technologie wird unter realen Bedingungen im Sonnenturm Jülich (STJ) in Deutschland erprobt.
Dazu müssen vom KIT die folgenden projektspezifischen technischen Ziele erreicht werden:  
  • Die Entwicklung und Realisierung eines neuen Schwefelbrenners im Laboratoriumsmaßstab, der es ermöglicht in einem Bereich von 10-50 kW stabile Verbrennungsbedingungen mit > 99% Verbrennungswirkungsgrad und Leistungsdichten von > 1,5 MW/m3 (Dies entspricht einem Wert, der dreimal höher ist als bei konventionellen Schwefelverbrennungsanlagen) unter atmosphärischen Bedingungen und Temperaturen >1400°C .
  • In Zusammenarbeit mit den Projektpartnern wird die Durchführbarkeit des Gesamtprozesses demonstriert, das detaillierte Gesamtfließschema erstellt und eine Analyse des optimierten, integrierten Prozesses, der auf 5MWth skaliert ist, durchgeführt. Dabei wird auch eine Bewertung der Technologie gegenüber der Zielstellung durchgeführt.

Weitere Informationen sind in einer Pressemitteilung des KIT erläutert und an der Internetseite des Projekts (Link unten).

 

Im Rahmen dieses Schwerpunkts wurden in den vergangenen Jahren auch folgende Forschungsprojekte bearbeitet:



AP2000 Klärung der Trennmechanismen
(METPORE II - Nanostrukturierte, metallgetragene Keramikmembranen für die Gastrennung in fossilen Kraftwerken)
Das METPORE II Verbundprojekt untersucht die Abtrennung von Kohlendioxid (CO2) aus Rauchgasen mittels keramischer Membranen, um das aufkonzentrierte CO2 im CCS-Verfahren effizienter in entsprechende Speicherstrukturen verpressen zu können. Diese Strategie zur CO2-Abtrennung aus Gasgemischen kann prinzipiell auch bei anderen Verfahren (Biogasaufbereitung) eingesetzt werden, die ebenfalls von der thermischen und chemischen Stabilität keramischer Membranen profitieren.  
Im Teilprojekt am Lehrstuhl Verbrennungstechnik des Engler-Bunte-Instituts sollen die Mechanismen bei der Kohlendioxid/Stickstoff- (CO2/N2)-Trennung mittels unterschiedlicher Membranen aufgeklärt werden, um aus diesen Erkenntnissen Designstrategien für optimierte Membranen ableiten zu können. Zu diesem Zweck sollen die Diffusionskoeffizienten der Gasmoleküle für die Membranen nach der Wicke-Kallenbach-Methode untersucht werden. Neben den Majoritätenkomponenten Stickstoff und Kohlendioxid wird mit dem Versuchsstand auch die Rolle von Wasserdampf als Bestandteil von Rauchgasen bei der Coadsorption als wichtigen Schritt der Permeation untersucht, dazu kann Wasserdampf dem synthetischen Rauchgas in weitem Konzentrationsbereichen zudosiert werden. Bei der Untersuchung werden moderne Gasmischstationen eingesetzt, für die Gaskonzentrationsmessung wird ein Quadrupolmassenspektrometer mit hoher Messempfindlichkeit und weitem Messbereich verwendet.
Dieses Projekt wird vor Ort durch ein weiteres Teilprojekt zur Degradations- bzw. Beständigkeitsmessung an den Membranen der DVGW-Forschungsstelle ergänzt, beide Teilprojekte nutzen hierbei synergetisch die Gasinfrastruktur und Gasanalytik.




Theoretische Erfassung der Abhebehöhe von Strahlflammen bei Druckverbrennung
(KW21-BWL)

Bei dem angestrebten Konzept wird ein Brennstoffstrahl mit einem sehr hohen Impuls in einen heißen Abgasstrom eingedüst. Durch die extrem hohen Geschwindigkeiten kann die Flamme erst in einem gewissen Abstand vom Düsenaustritt stabilisieren. Bis zum Stabilisierungspunkt hat der Strahl so viel Masse angesaugt, dass die Verbrennung unter mageren Bedingungen abläuft und deswegen mit sehr niedrigen NOx-Emissionen.
Die Vorteile dieses innovativen Verbrennungskonzeptes neben den niedrigen Emissionen sind der weite Stabilitätsbereich und die Robustheit gegenüber Flammenschwingungen. Das Emissionsverhalten des Verbrennungskonzeptes wird durch die stöchiometrischen Bedingungen unter denen die Verbrennung abläuft gesteuert. Diese hängen hauptsächlich von der Abhebehöhe der Flamme ab. Somit stellt die Kenntnis der Abhebehöhe einen Schlüsselparameter, um so ein Verbrennungskonzept auszulegen.
Daraus resultiert auch das Ziel des Projektes, das die Wiedergabe der Abhängigkeit der Abhebehöhe von den thermodynamischen Betriebsbedingungen (Druck, Temperatur) und den Strömungsbedingungen (Impulsverhältnis Strahl zu Hauptströmung, Strahlaustrittsdurchmesser) durch Modellierung des Verbrennungskonzeptes anstrebt.


Modeling of wood combustion
(WoodComb)
EIFER is working on the development of innovative biomass fed systems for residential applications. The aim of the project is to build up competencies on the combustion of biomass applied to domestic devices. The work of the Institute of “Technical Chemistry and Polymer Chemistry” and the “Engler-Bunte-Institute (Division of Combustion Technology)” includes the following packages: Characterisation of gaseous species production kinetics during wood combustion, Development of a solid phase combustion model, CFD modelling of an wood logs stove and a pellets boiler.

Experimental study of a high-strain burner
(KW21-BWW)

Designing of a prototype gas turbine combustor to achieve low NOx emissions (less than 25 ppm) using high strain burner working in diffusion mode. Lifted turbulent lean partially premixed flame posseses the advantages of both, premixed and diffusion flames. In this study, a lifted turbulent partially premixed flame is stablized in a hot environment using a high strain fuel jet. In the present design, staged combstion is used. In the primary combustion stage which is also called hot vitiated air genertor employs an in-house built air blast swirl burner. The swirl burner operates with Jet-A fuel. It produces hot vitiated air with different temperatures ranging from 1100-1400 deg. C and different pressures ranging from 0.5-1.8 MPa. In the secondary stage combustion, a high strain oil cooled burner is used for injecting natural gas at very high velocities into the hot vitiated air in order to achieve a stable,lifted turbulent partially premixed flame. After the secondary stage combustion, the temperature and the exhasut gas emissions are measured using accurate instruments. Our initial results proved that it is possible to achieve a very low NOx emissions (less than 25 ppm) using a staged combustion chamber consiting of a swirl burner operating with Jet-A fuel and a high strain burner operating with natural gas for the operating conditions of a gas turbine.