Fakultät für Chemieingenieurwesen und Verfahrenstechnik ¦ Engler-Bunte-Institut ¦ English ¦ Impressum ¦ Datenschutz ¦ KIT
Chemischer
Gleichgewichtsrechner

Probieren Sie auf dieser Seite unser Programm für die Berechnung des thermodynamischen Gleichgewichtes einer Gasmischung
mehr ...

Kontakt

Engler-Bunte-Ring 7
76131 Karlsruhe 

Gebäude 40.13.I 

Tel: +49(0)721 608-42571
Fax: +49(0)721 608-47770

E-Mail: Sekretariat
MCS 10 - Vortrag

Bockhorn, H.: "Some notes on challenges of combustion in future energy systems".
mehr ...

Bachelor- und Masterarbeiten

Aktuelle Angebote für das Anfertigen von Bachelor- und Masterarbeiten finden sie auf der folgenden Seite.
mehr ...



Prof. Dr.-Ing. habil. Horst Büchner



Engler-Bunte-Institut
Bereich Verbrennungstechnik



Engler-Bunte-Ring 1
76131 Karlsruhe

eMail: Horst.Buechner∂kit.edu

Telefon: 49 1744108299 (mobile)
Fax:       49(0)721 608 47770

 

 

Forschungsgebiete:

 

Selbsterregte Strömungs- und Verbrennungsinstabilitäten, turbulente Vormisch- und Diffusionsverbrennung, schadstoffarme Verbrennung, Schadstoffbildung, mathematische Modellierung und Berechnung von Feuerungssystemen, Brennerauslegung, Flammenmodellierung

 

 

Niederfrequent schwingende Vormisch-Flamme mit charakteristischen Ringwirbeln

 

Hauptforschungsgebiet:

 

Das Hauptforschungsgebiet der Forschungsgruppe „Strömungs- und Verbrennungsinstabilitäten“ am Lehrstuhl für Verbrennungstechnik ist seit fast 20 Jahren die Untersuchung und Identifikation der physikalischen Mechanismen, welche zur selbsterregten Entstehung von Verbrennungsinstabilitäten („Thermoakustik, Verbrennungsschwingungen, Brennkammerschwingungen, pulsierende Verbrennung/Flammen, Verbrennungs-Oszillation“) bei großtechnischen Verbrennungssystemen führen. Diese durch energiereiche Druckschwingungen gekennzeichneten, periodischen Störungen führen zu starken mechanischen und thermischen Belastungen von Bauteilen bis hin zu deren Versagen sowie zum Flammenrückschlag und sind daher für den Dauerbetrieb des Verbrennungssystems nicht tolerierbar. Je nach dem zugrunde liegenden Rückkopplungsmechanismus, welcher natürlich in erheblichem Maße die Wirksamkeit von Abhilfemaßnahmen festlegt, treten sowohl niederfrequente Schwingungen („rumble, Brummen“) als auch hochfrequente („Pfeifen, Screaming“) auf, wobei - neben der Schwingung des statischen Druckes in der Brennkammer sowie in vor- bzw. nachgeschalteten Anlagenteilen (Brennergehäuse, Mischeinrichtung, Abgasführung) – auch starke Schwankungen der Flammengeometrie sowie der integralen Wärmefreisetzung aus dem Verbrennungsprozess einhergehen.

 

Die Ursachen für diese Verbrennungsschwingungen, die zumeist eine Systeminstabilität darstellen, bei welcher verschiedene Komponenten eines Verbrennungssystems (Brennstoff/Luft-Mischer, Brenner, Flamme, Brennkammer, etc.) miteinander in zeit- bzw. frequenzabhängige Wechselwirkungen treten, die dann letztlich zu einer erheblichen, nicht akzeptablen Verstärkung ursächlich schwacher Störungen führen, können ausgesprochen vielfältig sein. So können periodische Fluktuationen der Zündzone(n) („Zündstörungen“), verbrennungs- oder strömungsinduzierte, zeitliche Änderungen der Drallintensitäten („Drallzahl, Drallstärke, drallstabilisiert“), periodische Ausbildung reaktionsfähiger Wirbelstrukturen („Ringwirbelbildung, Wirbelablösung“) und deren phasenrichtige Abreaktion das schwingungsfähige Gesamtsystem anregen, um dann bei phasenrichtiger Rückkopplung mit ausreichender Energiezufuhr zu stabilen, selbsttätig erhaltenen Dauerschwingungen auf energetisch hohem Niveau (atmosphärisch betriebene Verbrennungssysteme häufig bis 20 mbar Druckamplituden, druckaufgeladene Verbrennungssysteme bis 1 bar bei Frequenzen zwischen wenigen Hz bis zu 5 KHz.

 

Die mathematische Beschreibung des Gesamtsystems zur Berechnung dessen Schwingungsstabilität erfordert zwingend die Kenntnis der frequenzabhängigen Übertragungsverhalten(„Flammentransferfunktion, Amplitudenverhältnis, Phasengang“) aller an dem physikalischen Rückkopplungskreis beteiligten Systemkomponenten (Mischer – Brenner – Flamme – Brennkammer), in Abhängigkeit aller relevanten Betriebsparameter der Feuerung (thermische Leistung, Luftzahl, Brennstoffart, Drallstärke, Verbrennungs-Mitteldruck, etc.), welche durch Anwendung regelungstechnischer Methoden bestimmt werden können. Aus diesen Aussagen ist es dann möglich, das Stabilitätsverhalten des Gesamtsystems in Abhängigkeit der Geometrie und der gewünschten Betriebsbereiche vorherzusagen sowie wirksame und kostengünstige Abhilfemaßnahmen, welche auf den im individuell vorliegenden Schwingungsfall wirksamen Rückkopplungsmechanismus angepasst werden müssen, aufzuzeigen. Folgende Graphik ist ein Link zu detaillierterer Erklärung der von uns gewonnen Erkenntnisse.

 

       <<Link zu Messergebnissen

 

 

Weitere Forschungsgebiete:

 

    Untersuchung der Entstehung von Verbrennungslärm in Flammen und Entwicklung von Maßnahmen zu deren Minderung („Schalldruckmessungen“)

    Druckverbrennung flüssiger, vorverdampfter und gasförmiger Brennstoffe in turbulenten Vormisch- und Diffusionsflammen

    Berechnung und Auslegung von Resonatoren als Dämpfer („Dämpfungsmaß, Resonanzfrequenz“)

 

 

 

Ausstattung/Versuchsanlagen

 

Zur Durchführung der erforderlichen experimentellen Untersuchungen stehen folgende Versuchsstände zur Verfügung:

 

    Großbrenner-Prüfstand bis 2.5 MWth

    Verbrennungsanlage mit Luftvorwärmung bis 400°C für flüssige und gasförmige Brennstoffe bis 300 kWth für Diffusionsflammen und/oder Vormischbetrieb

    Versuchsanlagen für Untersuchungen an Kleinbrennersystemen von 6 kWth bis 80 kWth

    Plexiglaskammern für isotherme Strömungsuntersuchungen

    Vorverdampfereinheiten für den LPP-Betrieb

    Pulsationseinheiten für stark variable und in Frequenz und Amplitude unabhängig regelbare Massenstrommodulation

    Eigenentwickelte doppel-konzentrischer, pilotierter Drallbrenner mit wahlweise stufenlos variierbarem Drall durch Tangentialdrallerzeuger, bzw.
Axialschaufeldrallerzeuger mit gasturbinenähnlicher Geometrie und stufenlos variabler Auslasskonfiguration (Leistungsklasse 50-500 kWth)

 

Weitere Eigenentwicklung: Vormisch-Drallbrenner, Variabel: Drall, Auslassgeometrie, Luftzahl, Leistung, Flammentyp, Brennstoff

 

 

Messtechniken

 

Neben den standardmäßig existierenden Messtechniken für stationäre Messgrößen im Bereich der Verbrennungstechnik / Hochtemperaturverfahrenstechnik sind besonders hervorzuheben:

 

    Charakterisierung isothermer Strömungsinstabilitäten
Konstant-Temperatur-Hitzdrahtanemometrie (CTA) und phasenkorrelierte Videoaufnahmen des mit Hilfe eines Tracermediums und eines Laserlichtschnitt-Systems sichtbar gemachten Strömungsfeldes

    Erfassung schneller Mischungsänderungen in isothermen, nicht-reagierenden Strömungen
Eigenentwicklung einer zeitlich und räumlich hochauflösenden Konzentrationsmesstechnik

    Zeitlich hochauflösende Temperaturmesstechnik
-    Schnelle, elektronisch trägheitskompensierte Thermoelement-Messtechnik
-    2-dimensionale Feldverteilung der Temperatur über Rayleigh-Streuung

    Reaktionsumsatzverhalten periodisch instationärer turbulenter Drall- und Strahlflammen
-    Getriggerte Aufnahmen der "eingefrorenen" Gesamtflamme die Flammenkontur zu verschiedenen Zeitpunkten innerhalb der Periode der Schwingung mittels CCD-Videokamera
-    Ermittlung der Strahlungsintensität angeregter OH*-Radikale durch Photomultiplier
-    Planare, laserinduzierte Prädissoziationsfluoreszenz (2-D PLIPF) der OH- Moleküle

    Schwankungen des statischen Druckes der Gassäule in der Brennkammer
gekühlte Kondensatormikrofone mit hohen Amplitudenauflösungen und linearem Frequenzverhalten

    Auswertung von zeit- bzw. frequenzabhängigen Signalen
2-Kanal-Frequenzanalysatoren unter Verwendung von Korrelationsverfahren

 

 

Industriekooperationspartner

 

Im Laufe der vergangenen zwei Jahrzehnte wurden innerhalb zahlreicher Kooperationen mit  Industrieunternehmen unerwünschte, selbsterregte Druck-/ Flammenschwingungen, welche bei nachfolgend beschriebenen industriellen Großanlagen aufgetreten sind, erfolgreich, schnell und kostengünstig beseitigt.

 

    Stromerzeugende Industrie (GuD-Kraftwerke)

    Heizkraftwerke

    Papierindustrie

    Hersteller von Industrie- und Haushaltsbrenner

    Reaktoren aus der chemischen Industrie

 

 

Lehrveranstaltungen

 

 

„Strömungs- und Verbrennungsinstabilitäten in technischen Feuerungssystemen“

 

Neben der Einhaltung der vom Gesetzgeber vorgeschriebenen Schadstoff-Emissionsgrenzwerte stellt die über den gesamten Regelbereich sichere Gewährleistung eines stabilen Verbrennungsprozesses eines der größten Probleme bei der Entwicklung und Optimierung neuer Verbrennungssysteme dar. Da bei dem heutigen Wissensstand keine sicheren Vorhersagen zum Stabilitätsverhalten der Komponenten Brenner - Flamme - Brennkammer bei deren Kopplung während der Auslegungsphase möglich sind, verursacht die Beseitigung periodischer Verbrennungsinstabilitäten durch empirische Maßnahmen bei der Inbetriebnahme zeit- und kostenintensive Modifikationen an der Originalausführung.

 

    Einteilung und Beschreibung von Verbrennungsinstabilitäten
Phänomenologie, Definition des Stabilltätsbegriffes, Einteilung periodisch instationärer Verbrennungsvorgänge, Einflussgrößen auf die Schwingungsneigung

    Messtechnische Erfassung dynamischer Flammeneigenschaften
Hitzdraht-Anemometrie (Strömungsmesstechnik), Wärmeleitfähigkeitssonde (Konzentrationsmesstechnik), Trägheitskompensierte Thermoelemente (Temperaturmesstechnik), Wassergekühlte Kondensatormikrophone (Druckmesstechnik), Ionisationssonden (Messtechnik zur Flammenfrontdetektion), Photomultiplier (Messtechnik zur Bestimmung des instationären Reaktionsverhaltens mittels OH-Radikalenstrahlung (Chemilumineszenz))

    Eigenschaften turbulenter Vormischflammen

    Bedeutung vorgemischter Verbrennungssysteme, Zündstabilität und Schwingungsneigung, Eigenschaften stationärer, turbulenter Vormischflammen, Eigenschaften periodisch instationärer, turbulenter Strahlen und Flammen (frequenzabhängiges Übertragungsverhalten vorgemischter, turbulenter Strahl- und Drallflammen), Ausbildung und Abreaktion turbulenter Ringwirbelstrukturen

    Einfluss von Druck-/Flammenschwingungen auf das Schadstoff-Emissionsverhalten der Feuerung

    Auswirkungen von Druckschwingungen auf die Brenngas-/Luft-Gemischbildung (Ausbrandverhalten, thermisches NOx)

    Bestimmung des Druckübertragungsverhaltens einer Modellbrennkammer

    Mathematische Beschreibung des Resonanzverhaltens einer Brennkammer (Helmholtz-Resonator-Modell), experimentelle Bestimmung charakteristischer Brennkammereigenschaften, Temperatur- und Geometrieabhängigkeit der Schwingungsdämpfung

    Stabilitätsanalyse eines vereinfachten Vormischverbrennungssystemes

    Beispiele selbsterregter Druckschwingungen, Stabilitätskriterien (z.B. Rayleigh-Kriterium), Kopplung der frequenzabhängigen Übertragungsverhalten von Brenner, Flamme und Brennkammer, konstruktive Möglichkeiten zur Vermeidung/Unterdrückung selbsterregter Druck-/ Flammenschwingungen (active control und eigene Verfahren)

 

 

„Energietechnik“

 

    Allgemeine Gesichtspunkte der Energietechnik:
-          Bedeutung von Energieumwandlungsprozessen
-          Energieversorgung und Energievorräte
-          Elektrizitätswirtschaft in Deutschland
-          Fragestellungen der Energietechnik

    Thermodynamische Grundlagen zur Beschreibung von Energieumwandlungsprozessen und energietechnischer Fragestellungen:
-          Systembegriff und thermische Zustandsgrößen
-          Arbeit, Innere Energie und Wärme – 1. Hauptsatz
-          Zustandsänderungen eines idealen Gases in offenen und geschlossenen  Systemen, Kreisprozesse
-          Irreversible Prozesse und deren Beurteilung
-          Bewertung von Energieumwandlungsprozessen

    Ausgewählte Energieumwandlungsprozesse thermischer Kraftmaschinen und –anlagen:
-          Heißgas und Verbrennungsmotoren
-          Gasturbine
-          Dampfkraftanlagen

    Schadstoffemissionen und Minderungsmaßnahmen bei fossil befeuerten Kraftwerken:
-          Übersicht der Schadstoffe aus Verbrennungsprozessen
-          Entstehungsmechanismen bei der Verbrennung fossiler Energieträger
-          Technologien zur Emissionsminderung

Update Page