Fakultät für Chemieingenieurwesen und Verfahrenstechnik ¦ Engler-Bunte-Institut ¦ English ¦ Impressum ¦ Datenschutz ¦ KIT
Chemischer
Gleichgewichtsrechner

Probieren Sie auf dieser Seite unser Programm für die Berechnung des thermodynamischen Gleichgewichtes einer Gasmischung
mehr ...

Kontakt

Engler-Bunte-Ring 7
76131 Karlsruhe 

Gebäude 40.13.I 

Tel: +49(0)721 608-42571
Fax: +49(0)721 608-47770

E-Mail: Sekretariat
Link zur Seite:
Kooperationspartner:
Bachelor- und Masterarbeiten

Aktuelle Angebote für das Anfertigen von Bachelor- und Masterarbeiten finden sie auf der folgenden Seite.
mehr ...

Direkte Numerische Simulation
Mit der ständig wachsenden Rechenleistung und Speicherkapazität heutiger Computer gewinnt die direkte numerische Simulation (DNS) zur Durchführung grundlegender wissenschaftlicher Studien zunehmend an Bedeutung. Hierbei werden die dem Problem zugrunde liegenden partiellen Differentialgleichungen ohne weitere Parametrisierung feiner Skalen direkt gelöst. Die Problematik besteht darin, daß die modellfreie Simulation turbulenter Strömungen sehr rechenintensiv ist. Die turbulenten Zeit- und Raumskalen müssen komplett aufgelöst werden. Für beschränkte Parameterbereiche und einfache Geometrien kann die DNS für reaktive Strömungen angewandt werden.

Mit Hilfe der DNS können in gezielter Weise numerische Experimente durchgeführt werden, die modellfrei das intermittente Verhalten der Strömung voll berücksichtigen und somit tiefgehende und neue Einblicke in die Wirkungsweise turbulenter Strömungen ermöglichen.

Die hieraus gewonnenen Kenntnisse über die Wechselwirkung zwischen Turbulenz, Vermischung und chemischer Reaktion können anschließend dazu verwendet werden, vorhandene Turbulenz- und Mischungsmodelle zu validieren und gegebenenfalls zu verbessern.


 

Im Rahmen dieses Schwerpunkts werden folgende Forschungsprojekte bearbeitet:


Fortschrittliche direkte Biogas-Brennstoff Einheit für die robuste und kostensparende dezentrale Wasserstofferzeugung
(BIOROBURplus)
BioROBURplus baut auf die Ergebnisse des FCH JU BioROBUR Projektes auf (Direkter, oxidativer Biogas-Dampfreformer) um eine vorkommerzielle Brennstoffverarbeitungseinheit, die 50 mN3 (d.h. 107 kg/Tag) 99.0%-igen Wasserstoff aus verschiedenen Biogastypen (Deponie, anaerobe Verarbeitung organischer Abfälle, anaerobe Verarbeitung von Abwasserschlämmen) auf kostensparende Weise erzeugt. Die Energieeffizienz der Biogasumwandlung zu H2 wird aufgrund folgender technologischer Neuerungen 80% auf HHV-Basis übersteigen:
  • erhöhte interne Wärmerezirkulation ermöglicht die Minimierung der Luftzufuhr zum Reformer aufgrund strukturierter zellulärer Keramiken die mit stabilen und recyclebaren Edelmetallkatalysatoren, die eine erhöhte Verkokungsresistenz aufweisen, beschichtet sind.
  • eine angepasste Druck-Temperatur Swing Adsorption (PTSA), die in der Lage ist Rückführung von Wärme sowohl unter Druck als auch bei niederen Temperaturen zu gewährleisten um die H2 Abtrennung von CO2 und N2 zu ermöglichen.
  • ein rekuperativer Brenner der auf Basis zellulärer Keramiken der in der Lage ist die niederkalorischen PTSA-Produktgase zu verwenden und so Wärme für die oben genannten Prozesschritte zur Verfügung zu stellen.
 
Gestaltungsvorschlag für den BioRoburplus Produktgasbrenner

Die ergänzend in BioROBUR bereits entwickelten technologischen Inovationen (fortschrittliches modulares System für die Luft/Dampf-Kontrolle zur Begrenzung der Verkokung; catalytic trap hosting WGS functionality and allowing decomposition of incomplete reforming products; etc.) werden es erlauben, alle Projektziele innerhalb des Projektrahmens zu erfüllen.
 
Poster zu Zentrum Energie Jahrestagung
 

Im Rahmen dieses Schwerpunkts wurden in den vergangenen Jahren auch folgende Forschungsprojekte bearbeitet:


Combustion noise
(CN_Bo)
Übergeordnetes Ziel des Forschungsvorhabens ist die Untersuchung der Entstehungsmechanismen sowie die quantitative Vorhersage des Verbrennungslärmes turbulenter Flammen. Als Berechnungswerkzeuge werden sowohl die Grobstruktursimulation bzw. LES (Large Eddy Simulation) als auch die DNS (Direkte Numerische Simulation) eingesetzt. Ein bislang im Rahmen von RANS (Reynold-Averaged-Navier-Stokes) – Berechnungen erfolgreich eingesetztes, auf Wahrscheinlichkeitsdichteverteilungen basierendes, Verbrennungsmodell soll zur Anwendung im LES-Kontext stufenweise weiterentwickelt werden. Der Einsatz des Modells im Rahmen einer kompressiblen LESFormulierung ermöglicht die direkte Berechnung des aus den grobskaligen Wirbeln herrührenden Anteils des Verbrennungslärmes. Die DNS-Simulationen erlauben zusätzlich die Untersuchung der aus der Feinstruktur stammenden Lärmanteile. Weiterhin können damit die für die LES-Feinstrukturmodelle verwendeten Modellierungskonzepte verfeinert werden und die im TP2 (Janicka) vorgenommene Rekonstruktion des Dichtesprunges verifiziert werden.


Weitere Ergebnisse können auf dieser Seite betrachtet werden.