Fakultät für Chemieingenieurwesen und Verfahrenstechnik ¦ Engler-Bunte-Institut ¦ English ¦ Impressum ¦ Datenschutz ¦ KIT
Chemischer
Gleichgewichtsrechner

Probieren Sie auf dieser Seite unser Programm für die Berechnung des thermodynamischen Gleichgewichtes einer Gasmischung
mehr ...

Kontakt

Engler-Bunte-Ring 7
76131 Karlsruhe 

Gebäude 40.13.I 

Tel: +49(0)721 608-42571
Fax: +49(0)721 608-47770

E-Mail: Sekretariat
Link zur Seite:
Kooperationspartner:
Bachelor- und Masterarbeiten

Aktuelle Angebote für das Anfertigen von Bachelor- und Masterarbeiten finden sie auf der folgenden Seite.
mehr ...

Strahlung

Die Auslegung effizienter Kühlkonzepte spielt bei der Entwicklung moderner Gasturbinenbrennkammern eine entscheidende Rolle. Die Einhaltung der maximal zulässigen Materialtemperaturen soll dabei mit einem möglichst geringen Aufwand an Kühlluft gewährleistet werden. Es ist daher erforderlich schon in der Entwicklungsphase die benötigten Kühlluftmassenströme zu kennen, da diese direkten Einfluss auf die zur Verfügung stehende Verbrennungsluft und somit auf die Schadstoffemissionen der Brennkammer haben.

Durch die Entwicklung eines geeigneten Modells soll unter Berücksichtigung der strahlungsaktiven Gase im Flammraum, der Strahlungswechselwirkung mit in der Flamme suspendierten Partikeln (wie z.B. Russ) und der Strahlung der Brennkammerwände die Wandtemperatur einer Brennkammer bestimmt werden. Die so ermittelte Temperaturverteilung kann anschließend zur Optimierung verschiedener Kühlkonzepte verwendet werden.

Zur numerischen Simulation der Strahlungsvorgänge in der Brennkammer wird ein sog. Monte-Carlo Verfahren verwendet. Das Prinzip dieser Simulationsmethode beruht auf der Verfolgung einer großen Anzahl zufällig verteilter Photonen durch den Brennraum. Die auf diese Weise ermittelte Verteilung der absorbierten Photo-nen kann schließlich als die übertragene Strahlungswärme interpretiert werden.


 

Im Rahmen dieses Schwerpunkts werden folgende Forschungsprojekte bearbeitet:


SOot Processes and Radiation in Aeronautical inNOvative combustors
(SOPRANO)
Die wissenschaftliche Hauptziel von SOPRANO ist es einen Durchbruch in den Forschungsbemühungen auf dem Feld der Rußpartikelchemie, der Partikelgrößenverteilung und deren Auswirkung in Bezug auf Strahlung bei Betriebsbedingungen, die typisch für Luftfahrtantriebe sind, zu erreichen. SOPRANO zielt darauf ab das Wissen und die Möglichkeiten experimenteller und numerischer Untersuchungen zu verbessern und so die Charakterisierung und Vorhersage von Rußemissionen unter "Low NOx" Verbrennungsbedingungen zu ermöglichen. 

 
Das industrielle Hauptziel von SOPRANO besteht darin die detaillierte Charaterisierung von Rußpartikeln durchzuführen, die von modernen Brennkammern bei realitätsnahem Betriebsbedingungen (z.B. bei erhöhtem Druckniveau) entstehen und so den Weg freizumachen für ein zukünftiges Design von hocheffizienten Brennkammern. Dazu ist eine genauere Bestimmung der Strahlungseigenschaften und damit der Brennkammerwandtemperaturen erforderlich. 

Energy Efficient Coil Coating Process
(ECCO)

Coil Coating ist ein wichtiger industrieller Prozess, der in einem großen Teil der industriellen Stahl- und Metalllegierungsproduktion eingesetzt wird und mit großen Anlagen und großem Primärenergieverbrauch verbunden ist. Ein großer Teil der Gesamtanlagengröße und des Energiebedarfs von Bandbeschichtungsanlagen ist mit dem Trocknungs- bzw. Aushärteprozess innerhalb eines Aushärteofens verbunden, einem Engpass bei der Erhöhung der Produktionskapazität. Bei diesem Trocknungs-/Härteprozess werden organische Lösungsmittel aus dem aufgetragenen flüssigen Beschichtungsfilm verdampft und da sie brennbar sind, müssen die üblicherweise eingesetzten Härteöfen mit Konvektionslufttrocknungstechnik aus Sicherheitsgründen weit unterhalb der Explosionsgrenze (LOW) betrieben werden. ECCO bietet eine neuartige Lösung für den Aushärteofenbetrieb an, die nicht nur die Kompaktheit und energetische Effizienz des Systems drastisch erhöhen kann, sondern durch einen brennstoffflexiblen, modularen und potenziell energetisch selbsttragenden Prozess zu einer erhöhten Produktionsflexibilität führt. Die Hauptidee besteht darin, das Metallband durch IR-Strahlung zu erwärmen und den Aushärteofen weit über die obere Explosionsgrenze (UEL) hinaus zu betreiben, um den Trocknungs- und Aushärtungsprozess in einer Atmosphäre durchzuführen, die hauptsächlich aus Lösemitteldämpfen besteht, die als Brennstoff in IR-Strahlungsporenbrennern verwendet werden.

Abbildung 1: Vergleich von herkömmlichen Trocknungsprozessen zu ECCO Konzept.

Diese Lösung führt zu einer Reduzierung der Größe/Produktionskapazität von 70% und zu einer Reduzierung der Investitions- und Betriebskosten um jeweils mindestens 40%. Ausgehend von den bisherigen Aktivitäten bei TRL 4 ist ein interdisziplinärer Ansatz vorgesehen, der auf fortschrittlichen Werkstoffen, Verbrennungstechnik und Prognosewerkzeugen für die Systemauslegung/-optimierung aufbaut, um diese Technologie unter aktiver Beteiligung der wichtigsten industriellen Akteure in TRL 6 einzubringen und einen Prototypenofen in industriell relevanter Größe und Umgebung zu realisieren.

Video 1: Lösemittel während Zündung in Explosionsprüfstand zur Ermittlung der Sauerstoffgrenzkonzentartion.

 

 

Im Rahmen dieses Schwerpunkts wurden in den vergangenen Jahren auch folgende Forschungsprojekte bearbeitet:


Peroxid Poolflammen
(ZN11766_10)
Es hat sich gezeigt, dass die bisherigen weit verbreiteten Oberflächen-Strahlungsmodelle, ohne Berücksichtigung chemischer Reaktionen (Verbrennungsmodelle) sowie ohne Turbulenz- und Rußmodelle zur Abschätzung des Gefahrenpotentials von Schadenfeuern, überdacht werden müssen. Stattdessen sind fluiddynamische kohärente Strukturen und CFD-Simulationen wechselwirkender Brände zu betrachten, unter Einbeziehung obiger, teils zu entwickelnder Submodelle.

Insbesondere soll das Wissen über die Wechselwirkungsphänomene zwischen zwei und einer größeren Anzahl von Poolbränden experimentell und mit CFD-Simulation untersucht werden. Außerdem soll das Wissen über die Länge der sog. klaren Verbrennungszone, die nicht mit schwarzen Rußballen bedeckt ist, vertieft werden. Ebenfalls soll das Wissen über die spezifische Ausstrahlung (SEP) bei Einzel- und wechselwirkenden schwarz rußenden Bränden erweitert werden.

Von großer Bedeutung und eine Voraussetzung für die Erreichung der oben genannten Ziele ist außerdem die Erweiterung des Wissens über die chemischen Elementarreaktionen in Peroxid-Poolfeuern insbesondere auch hinsichtlich der Rußbildung in solchen und in KW- Poolfeuern. Hierzu werden Mechanismen der Rußbildung verbessert und Reaktionsmechanismen für die Verbrennung von organischen Peroxiden entwickelt und in CFD-Werkzeuge integriert. Ansätze hierfür sind z.B. Flamelet-Konzepte, die im Rahmen dieses Forschungsvorhabens verfolgt werden sollen.

In diesem Forschungsvorhaben soll die Untersuchung der Verbrennung von Kohlenwasserstoffen und Di-tert-butylperoxid (DTBP), (CH3)3C-O-O-C(CH3)3 in O2/N2-Flammen durchgeführt werden.

Durch diese interdisziplinäre Vorgehensweise können die folgenden Ziele erreicht werden:
  • Verbesserung und Entwicklung von Reaktionsmechanismen für die Bildung und Oxidation von Ruß bei der Verbrennung von Kohlenwasserstoffen bzw. Verbrennung von organischen Peroxiden (DTBP). Hierzu ist es erforderlich, für die einzelnen relevanten chemischen Reaktionen dieser Stoffsysteme die kinetischen Daten zu ermitteln, um für jeden Reaktionsweg dieses Systems die Geschwindigkeitskoeffizienten als Funktion der Temperatur und des Drucks zu erhalten
  • eine deutlich realistischere Abschätzung der SEP von KW- und Peroxid-Poolbränden
  • eine erstmalige Abschätzung der SEP von wechselwirkenden KW- und Peroxidbränden
  • eine deutlich verbesserte Abschätzung thermischer Abstände zwischen Poolbränden und benachbarten Schutzobjekten sowie die Erarbeitung von
  • Vorschlägen für Maßnahmen zur Brandvermeidung im Umgang mit entzündbaren und selbst zersetzlichen Flüssigkeiten in verfahrenstechnischen Anlagen.



.