Department of Chemical and Process Engineering  ¦ Engler-Bunte-Institute ¦ Deutsch ¦ Legals ¦ Data Protection ¦ KIT
Gasphase
Equilibrium calculator

Please try out our program for calculating the gas phase equilibrium state.
more...

Contact

Engler-Bunte-Ring 7
76131 Karlsruhe 

Building number 40.13.I 

Tel: +49(0)721 608-42571
Fax: +49(0)721 608-47770

E-Mail: Secretariat

Link to page:
Co-operation partner:
Bachelor- and Masterthesis

Current proposals for topics of bachelor- and master thesis you find on the following page.
more ...

Monolithic Foams

Offenporige Schäume sind monolithische, starre Netzstrukturen aus verbundenen Stegen, die von einem kontinuierliche, fluiddurchlässigen Hohlraum durchdrungen werden. Feste Schwämme weisen aufgrund ihrer interessanten Eigenschaften ein großes Anwendungspotential in der Verfahrenstechnik auf, das bisher nicht erschlossen wurde.

Zwar finden sich in der Literatur Einzelbeispiele für verfahrenstechnische Anwendungen, jedoch fehlen noch die quantitativen Bewertungskriterien für den sinnvollen Einsatz dieser Strukturen und für den Vergleich mit herkömmlichen Schüttungen, Packungen und Einbauten. Eine wesentliche Ursache dafür sind Defizite im Verständnis und in der quantitativen Beschreibung von Materialauswahl und zur Abschätzung der Einsatzgrenzen und Lebensdauern unter mechanischer und thermischer Beanspruchung.

In der von der Deutschen Forschungsgemeinschaft (DFG) geförderten Forschergruppe 583 sind materialwissenschaftliche Studien und grundlegende Untersuchungen zur Impuls-, Stoff- und Wärmeübertragung in den festen Schwämmen verbunden werden mit der Untersuchung ausgewählter, neuer Beispiele für ihren Einsatz in katalytischen Reaktoren, Filtern, Brennern und statischen Mischern. In einer koordinierten Zusammenarbeit sollen die fehlenden theoretischen Voraussetzungen für die modellgestützte, quantitative Bewertung der Anwendungspotentiale und für die Auslegung von verfahrenstechischen Apparaten geschaffen und angewandt werden.

 

 

Within this research focus the following research projects are associated:


Advanced direct biogas fuel processor for robust and cost-effective decentralised hydrogen production
(BIOROBURplus)
BioROBURplus builds upon the closing FCH JU BioROBUR project (direct biogas oxidative steam reformer) to develop an entire pre-commercial fuel processor delivering 50 Nm3/h (i.e. 107 kg/d) of 99.9% hydrogen from different biogas types (landfill gas, anaerobic digestion of organic wastes, anaerobic digestion of wastewater-treatment sludges) in a cost-effective manner. The energy efficiency of biogas conversion into H2 will exceed 80% on a HHV basis, due to the following main innovations:
  • increased internal heat recovery enabling minimisation of air feed to the reformer based on structured cellular ceramics coated with stable and easily recyclable noble metal catalysts with enhanced coking resistance;
  • a tailored pressure-temperature-swing adsorption (PTSA) capable of exploiting both pressure and low T heat recovery from the processor to drive H2 separation from CO2 and N2;
  • a recuperative burner based on cellular ceramics capable of exploiting the low enthalpy PTSA-off-gas to provide the heat needed at points 1 and 2 above.
 
Design option for the BioRoburplus off-gas burner

The complementary innovations already developed in BioROBUR (advanced modulating air-steam feed control system for coke growth control; catalytic trap hosting WGS functionality and allowing decomposition of incomplete reforming products; etc.) will allow to fully achieve the project objectives within the stringent budget and time constraints set by the call. Prof. Debora Fino, the coordinator of the former BioROBUR project, will manage, in an industrially-oriented perspective, the work of 11 partners with complementary expertise: 3 universities (POLITO, KIT, SUPSI), 3 research centres (IRCE, CPERI, DBI), 3 SMEs (ENGICER, HST, MET) and 2 large companies (ACEA, JM) from 7 different European Countries. A final test campaign is foreseen at TRL 6 to prove targets achievement, catching the unique opportunity offered by ACEA to exploit three different biogas types and heat integration with an anaerobic digester generating the biogas itself.

 


Energy Efficient Coil Coating Process
(ECCO)

Coil coating is an important industrial process applied in a major part of industrial steel and metal alloy production and associated with big facilities and large primary energy consumption. A major part of the overall plant size and the energy demand of coil coating facilities is associated with the drying/curing process that occur inside a curing oven, which is the bottleneck concerning the increase of the production capacity. In this drying/curing process, organic solvents are vaporized from the applied liquid coating film and since they are flammable, the usually applied curing ovens with convective air drying technology have to be operated far below the Low Explosive Limit (LEL), due to safety constraints. ECCO proposes a novel solution for the curing oven operation, which can not only drastically increase the compactness and energetic efficiency of the system, but leads to an increased production flexibility due to a fuel-flexible, modular and potentially energetically self-sustainable process. The main idea is to heat the metal strip by IR-radiation and operate the curing oven well above the Upper Explosive Limit (UEL), thus, performing the drying and curing process in an atmosphere mainly consisting of the solvent vapours, which are used as fuel in IR radiant porous burners. This solution leads to a size/ production capacity ratio reduction of 70% and a reduction of investment and operating costs of at least 40% each. Starting from previous activities at TRL 4, an interdisciplinary approach is foreseen, based on advanced-materials, combustion technology and prediction tools for system design/ optimization, with active participation of key industrial stakeholders, to bring this technology to TRL 6 and realize a prototype furnace at industrially relevant size and environment.