Department of Chemical and Process Engineering  ¦ Engler-Bunte-Institute ¦ Deutsch ¦ Legals ¦ Data Protection ¦ KIT
Tutoren/innen gesucht für Numerik-Praktikum

Wir suchen noch studentische Betreuer für das Praktikum Numerik im Ingenieurwesen.
more...

Gasphase
Equilibrium calculator

Please try out our program for calculating the gas phase equilibrium state.
more...

Contact

Engler-Bunte-Ring 7
76131 Karlsruhe 

Building number 40.13.I 

Tel: +49(0)721 608-42571
Fax: +49(0)721 608-47770

E-Mail: Secretariat

Link to page:
Co-operation partner:
Bachelor- and Masterthesis

Current proposals for topics of bachelor- and master thesis you find on the following page.
more ...


  Project summary

Project name:

Modular extension of an overall model for improved prediction of combustion process in liquid fuel/water emulsions 

Project acronym: CEC3H 
Project duration: 01 2016 - 06 2020 
Financial support by: Bundeswirtschaftsministerium (BMWi) 
Description:

The research carried out withing the subproject 3H contributes to the fulfillment of the projects' goal "operation flexibility and fuel flexibility". Operation stability is mainly depending on the the stability limit of combustion, which is still difficult to predict. Fuel flexibility requires the thorough design of a combustor which is able to operate on gaseous and liquid fuels. The goals of the subproject 3H, which continues the successful work of the subproject 1F stem from these requirements and challenges.
The liquid fuel and liquid fuel/water emulsion combustion model developed within in the framework of subproject 1F is able to predict the heat release during the combustion of liquid fuels with a given droplet diameter and velocity distribution. Hence, different important aspects which are important for the application of the model have not been accounted for. The first aspect concerns the specification of the droplet properties which is currently derived from experimental data. The second aspect is the neglect of heat losses which have a major impact on the calculation of flame stability and emissions. Furthermore, the model has only been validated for kerosene until now but not for diesel or diesel water emulsions.
The subproject 3H addresses these questions and aims to the development of a tool which can be used in the design process of a gas turbine combustion chamber. To this end, the atomization of the liquid fuel shall be described by an empirical model. Moreover, the influence of heat losses on the heat release rate shall be captured. Further aspects, e.g. the droplet wall interaction and the role of the fuel-to-water ratio distribution which have a significant impact on the gas turbine combustion process are investigated.

 
 
Project responsible: Prof. Dr.-Ing. Nikolaos Zarzalis
Scientific staff: M.Sc Arnold Herrgen