Department of Chemical and Process Engineering  ¦ Engler-Bunte-Institute ¦ Deutsch ¦ Legals ¦ Data Protection ¦ KIT
Gasphase
Equilibrium calculator

Please try out our program for calculating the gas phase equilibrium state.
more...

Contact

Engler-Bunte-Ring 7
76131 Karlsruhe 

Building number 40.13.I 

Tel: +49(0)721 608-42571
Fax: +49(0)721 608-47770

E-Mail: Secretariat

Link to page:
Co-operation partner:
Bachelor- and Masterthesis

Current proposals for topics of bachelor- and master thesis you find on the following page.
more ...

Monolithic Foams

Offenporige Schäume sind monolithische, starre Netzstrukturen aus verbundenen Stegen, die von einem kontinuierliche, fluiddurchlässigen Hohlraum durchdrungen werden. Feste Schwämme weisen aufgrund ihrer interessanten Eigenschaften ein großes Anwendungspotential in der Verfahrenstechnik auf, das bisher nicht erschlossen wurde.

Zwar finden sich in der Literatur Einzelbeispiele für verfahrenstechnische Anwendungen, jedoch fehlen noch die quantitativen Bewertungskriterien für den sinnvollen Einsatz dieser Strukturen und für den Vergleich mit herkömmlichen Schüttungen, Packungen und Einbauten. Eine wesentliche Ursache dafür sind Defizite im Verständnis und in der quantitativen Beschreibung von Materialauswahl und zur Abschätzung der Einsatzgrenzen und Lebensdauern unter mechanischer und thermischer Beanspruchung.

In der von der Deutschen Forschungsgemeinschaft (DFG) geförderten Forschergruppe 583 sind materialwissenschaftliche Studien und grundlegende Untersuchungen zur Impuls-, Stoff- und Wärmeübertragung in den festen Schwämmen verbunden werden mit der Untersuchung ausgewählter, neuer Beispiele für ihren Einsatz in katalytischen Reaktoren, Filtern, Brennern und statischen Mischern. In einer koordinierten Zusammenarbeit sollen die fehlenden theoretischen Voraussetzungen für die modellgestützte, quantitative Bewertung der Anwendungspotentiale und für die Auslegung von verfahrenstechischen Apparaten geschaffen und angewandt werden.

 

 

Within this research focus the following research projects are associated:


Energy Efficient Coil Coating Process
(ECCO)
Energy Efficient Coil COating Process

Coil coating is a continuous process for providing coating to a metal strip. In 2017, a total area of 1.37 billion m² of aluminium and steel was coated with 219 kt of paint in Europe, representing one third of the worldwide production. The coil coated products are mainly used in the construction market as building envelope. Consumers encounter coil coated products in everyday life for example as casing in a variety of size from fridges, washing machines to toasters and wireless speakers. In the coil coating process, a paint, mainly consisting of pigments, chemical crosslinkers and solvents, is applied to a metal strip. In a following step the paint is dried while the solvents evaporate. Afterwards, the paint is cured up to a certain temperature where the crosslinkers increase the adhesion between pigments and metal strip. In the conventional process the required heat is provided through convective heat transfer using hot air. In order to prevent the creation of an explosive atmosphere in the process, operation at a solvent concentration below the lower explosion limit by using an excess amount of air is inevitable. Prevention of VOC emission entails either recovery or thermal decomposition of the solvents, which can be stated as being technically complex and expensive due to the high dilution of the solvents.

In the ECCO project the proof of concept of a novel curing oven will be performed in a pilot scale coil coating line. In ECCO, the curing oven is operated at elevated solvent concentration which allows the direct utilization of solvents as a fuel for heat generation. Therefore, the oven system is separated in two sections: The radiant burner section, where intense radiation in the IR-spectrum is emitted at high temperatures resulting from combustion inside of a ceramic porous structure, and the curing oven section which is operated over the upper explosion limit or, in other words, below a critical oxygen concentration. The prevention of a thermal decomposition of the solvent loaded atmosphere at high temperatures is ensured through separation of the two oven sections by an IR-transmissive material. Starting from previous activities at TRL 4, an interdisciplinary approach is foreseen, based on advanced-materials, combustion technology and prediction tools for system design/optimization, with active participation of key industrial stakeholders, to bring this technology to TRL 6 and realize a prototype curing oven at industrially relevant size and environment. ECCO proposes an oven concept which leads to a drastically reduced size and increased energy efficiency as we as well a higher production flexibility due to a fuel-flexible, modular and potentially energetically self-sustainable process. In comparison to existing conventional convective curing systems, ECCO presents a less energy demanding, environment-friendly and economical technical curing oven concept.


Advanced direct biogas fuel processor for robust and cost-effective decentralised hydrogen production
(BIOROBURplus)
BioROBURplus builds upon the closing FCH JU BioROBUR project (direct biogas oxidative steam reformer) to develop an entire pre-commercial fuel processor delivering 50 Nm3/h (i.e. 107 kg/d) of 99.9% hydrogen from different biogas types (landfill gas, anaerobic digestion of organic wastes, anaerobic digestion of wastewater-treatment sludges) in a cost-effective manner. The energy efficiency of biogas conversion into H2 will exceed 80% on a HHV basis, due to the following main innovations:
  • increased internal heat recovery enabling minimisation of air feed to the reformer based on structured cellular ceramics coated with stable and easily recyclable noble metal catalysts with enhanced coking resistance;
  • a tailored pressure-temperature-swing adsorption (PTSA) capable of exploiting both pressure and low T heat recovery from the processor to drive H2 separation from CO2 and N2;
  • a recuperative burner based on cellular ceramics capable of exploiting the low enthalpy PTSA-off-gas to provide the heat needed at points 1 and 2 above.
 
Design option for the BioRoburplus off-gas burner

The complementary innovations already developed in BioROBUR (advanced modulating air-steam feed control system for coke growth control; catalytic trap hosting WGS functionality and allowing decomposition of incomplete reforming products; etc.) will allow to fully achieve the project objectives within the stringent budget and time constraints set by the call. Prof. Debora Fino, the coordinator of the former BioROBUR project, will manage, in an industrially-oriented perspective, the work of 11 partners with complementary expertise: 3 universities (POLITO, KIT, SUPSI), 3 research centres (IRCE, CPERI, DBI), 3 SMEs (ENGICER, HST, MET) and 2 large companies (ACEA, JM) from 7 different European Countries. A final test campaign is foreseen at TRL 6 to prove targets achievement, catching the unique opportunity offered by ACEA to exploit three different biogas types and heat integration with an anaerobic digester generating the biogas itself.