Contact
Engler-Bunte-Ring 7
76131 Karlsruhe
Building number 40.13.I
Tel: +49(0)721 608-42571
Fax: +49(0)721 608-47770
E-Mail: Secretariat
Please try out our program for calculating the gas phase equilibrium state.
more...
Engler-Bunte-Ring 7
76131 Karlsruhe
Building number 40.13.I
Tel: +49(0)721 608-42571
Fax: +49(0)721 608-47770
E-Mail: Secretariat
Current proposals for topics of bachelor- and master thesis you find on the following page.
more ...
In the transport sector as well as in power generation, combustion systems are used nowadays primarily to convert chemical energy locked up in fuels into the useful energy wanted. Since the burning of fossil fuels is one of the major causes of human-generated carbon dioxide, steps to reduce CO2 and thus lower fuel consumption have meanwhile become a permanently established element in the technical development of combustion systems. Investigations to improve energy utilisation and achieve this technically are carried out as current focal points of research. A brief introduction to the damaging effects of carbon dioxide on the climate can be viewed at the German Federal Environment agency, Berlin. |
Within this research focus in the past the following research projects were associated: |
![]()
|
BioROBURplus builds upon the closing FCH JU BioROBUR project (direct biogas oxidative steam reformer) to develop an entire pre-commercial fuel processor delivering 50 Nm3/h (i.e. 107 kg/d) of 99.9% hydrogen from different biogas types (landfill gas, anaerobic digestion of organic wastes, anaerobic digestion of wastewater-treatment sludges) in a cost-effective manner. The energy efficiency of biogas conversion into H2 will exceed 80% on a HHV basis, due to the following main innovations:
![]() Design option for the BioRoburplus off-gas burner The complementary innovations already developed in BioROBUR (advanced modulating air-steam feed control system for coke growth control; catalytic trap hosting WGS functionality and allowing decomposition of incomplete reforming products; etc.) will allow to fully achieve the project objectives within the stringent budget and time constraints set by the call. Prof. Debora Fino, the coordinator of the former BioROBUR project, will manage, in an industrially-oriented perspective, the work of 11 partners with complementary expertise: 3 universities (POLITO, KIT, SUPSI), 3 research centres (IRCE, CPERI, DBI), 3 SMEs (ENGICER, HST, MET) and 2 large companies (ACEA, JM) from 7 different European Countries. A final test campaign is foreseen at TRL 6 to prove targets achievement, catching the unique opportunity offered by ACEA to exploit three different biogas types and heat integration with an anaerobic digester generating the biogas itself.
|
The conversion of CO2 into valuable
![]()
The CELBICON- Process, as shown in the figure above, includes the Capture of atmospheric CO2, its conversion into synthesis gas in an Electro-catalytic reactor along with electricity and the subsequent Bio-technological conversion followed by a downstream processing into the final product (for example isoprene or bioplastics) The part of KIT in the CELBICON project is the realization an energy efficient supply of the feedstock of the electro-catalytic reactor, which consists of a water/CO2 solution at elevated temperature and pressure. As the energy required for the dissolution of CO2 in water is dominated by the work needed to compress the gaseous CO2, a new method of compressing and dissolving simultaneously will be investigated by KIT on the grounds of recent developments. |