Contact
Engler-Bunte-Ring 7
76131 Karlsruhe
Building number 40.13.I
Tel: +49(0)721 608-42571
Fax: +49(0)721 608-47770
E-Mail: Secretariat
Please try out our program for calculating the gas phase equilibrium state.
more...
Engler-Bunte-Ring 7
76131 Karlsruhe
Building number 40.13.I
Tel: +49(0)721 608-42571
Fax: +49(0)721 608-47770
E-Mail: Secretariat
Current proposals for topics of bachelor- and master thesis you find on the following page.
more ...
Conversion of chemically or nuclear bound energy into electrical and/or thermal energy (for heat use) takes place in power stations. When chemically bound energy is used, this primarily entails the burning of fossil fuels but also includes waste and biomass. A large proportion of electricity production in Germany comes from burning hard coal, brown coal and natural gas (for example, see: AG Energiebilanzen e.V.). |
Within this research focus in the past the following research projects were associated: |
PEGASUS will investigate a novel power cycle for renewable electricity production combining a solar centrifugal particle receiver with a sulphur storage system for baseload operation. The proposed process combines streams of solid particles as heat transfer fluid that can also be used for direct thermal energy storage, with indirect thermochemical storage of solar energy in solid sulphur, rendering thus a solar power plant capable of round-the-clock renewable electricity production.
![]() The overall objective of PEGASUS is the development and demonstration of an innovative solar tower system based on solid particles combined with a novel thermochemical solar energy storage technology based on elemental sulphur, to achieve dispatchable and firm renewable electricity generation with a significant cost reduction with respect to current state-of-the-art concepts. The technology will be validated under real on- sun concentrated solar irradiation in the Solar Tower Jülich (STJ) thermal plant in Germany owned by the Project Coordinator, DLR.
In this perspective, the project’s specific Technical Objectives of KIT are:
More information is published in a press-release of KIT and on the public website of the project (link below) |
The research carried out withing the subproject 3H contributes to the fulfillment of the projects' goal "operation flexibility and fuel flexibility". Operation stability is mainly depending on the the stability limit of combustion, which is still difficult to predict. Fuel flexibility requires the thorough design of a combustor which is able to operate on gaseous and liquid fuels. The goals of the subproject 3H, which continues the successful work of the subproject 1F stem from these requirements and challenges. |
In the context of the objective of the German government and the European Union's energy policy, it is crucial to increase the share of renewable energy. However, due to the fect that renewable engergy production due fluctuating wind and sun energy does not correlate with the customer demand, it is neccesary to compensate this energy generation gap with flexible power plants. Such plants need to be operated in a flexible load range. In this context, gas power plants play an important role because they allow rapid load changes and provide energy at high efficiencies.
The true representation of the realistic subprocesses represent the scientific part of the project goals 1F
|
The energy sector accounts for two thirds of the global CO2 emissions and is therefore crucial to ensure future green growth and to achieve the global emission reduction targets. Substantial reduction of CO2 emissions can only be achieved by large scale deployment of renewable energy sources, including in particular the most abundant energy sources, wind and sun. Their intermittent nature however poses significant challenges for the energy system as peak demand from the system and peak production form those intermittent sources do not overlap. As there are no large scale storage solutions available yet, other backup capacities are needed. The installed fossil capacity is large enough to provide this back-up power. However, the plants were designed for baseload operation, which results in increased wear and costs through cyclic operation and unnecessarily high emissions in the start-up phase. Providing technology upgrades to retrofit the installed power plants to enable flexible operation without penalties on life, cost and emissions is an opportunity to quickly provide the necessary backup capacity to keep the energy system stable and resilient and at the same time enabling higher renewable shares. The mission of TURBO-REFLEX is the development and optimisation of technologies, applicable to a selected set of turbomachinery engine components, which can be used to retrofit existing power plants as well as new machines in order to enable more flexible operation, providing the flexible back-up capacity needed for introducing a larger share of renewables in the energy system. TURBO-REFLEX will assess the impact of such technologies at plant level and prepare the transfer of component technology gains into reduction of both (unplanned and planned) outages and maintenance and operation costs.
The Lean Blow Off (LBO) limit is a significant hurdle to further reduce the part load of gas turbines as the operating zone of the combustor is restricted by the LBO limit. Jet stabilized premixed flames will be forecasted with blow off stability down to 1000°C–1200°C combustion temperature with or without using pilot flames. 1000°C–1200°C combustion temperature would equal emission compliant part load operation down to 20%-25%. Better blow-off stability in the combustor is a prerequisite to running higher load gradients. Therefore, it is expected that jet stabilized premixed flames with better LBO limits will allow also gradients faster than 40MW/min.
|
|