

Engler-Bunte-Ring 7
76131 Karlsruhe
vbt.ebi.kit.edu

Masterarbeit

Emissionsarme direkte Wasserstoffverbrennung für Flugtriebwerke

Motivation

Zur Umsetzung der Klimaziele bietet es sich an, moderne Gasturbinen (mobil oder stationär) mit Wasserstoff statt Kerosin oder Erdgas zu betreiben. Dadurch werden CO_2 - und Feinstaubemissionen vollständig vermieden. Zusätzlich ergibt sich für die Luftfahrt das Potenzial reduzierter NO_x -Emissionen sowie einer verringerten Kondensstreifenbildung aufgrund fehlender Feinstaubpartikeln.

In Flugzeugtriebwerken wird derzeit überwiegend das RQL-Verbrennungskonzept (Rich-Quench-Lean) für flüssige Treibstoffe eingesetzt. Dieses Konzept reduziert die NO_x -Emissionen durch eine Stufung der Verbrennung in eine brennstoffreiche Primärzone (Sauerstoffmangel und niedrige Verbrennungstemperaturen), eine Quenchzone mit schneller Vermischung und eine magerere Ausbrandzone (niedrige Verbrennungstemperaturen). Am Engler-Bunte-Institut steht eine Modellbrenneranlage für atmosphärische Drücke und verschiedene Brennerkonfigurationen für den Einsatz von 100 % Wasserstoff zur Verfügung.

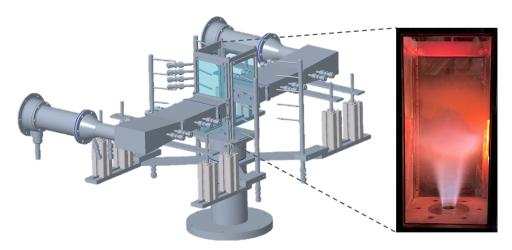


Abbildung 1: Schematische Darstellung der Modellbrennkammer sowie fotografische Aufnahme eines Betriebspunktes mit 100 % Wasserstoff im RQL-Betrieb

Aufgabenstellung

Im Rahmen dieser Masterarbeit sollen die in der Versuchsbrennkammer ablaufenden Vorgänge systematisch charakterisiert, miteinander verglichen und bewertet werden. Die Schwerpunkte der Arbeit können – abhängig von Interessen, Startdatum und Projektfortschritt – flexibel gestaltet werden. Mögliche Arbeitspakete umfassen dabei:

- Untersuchung der Strömungsfelder mittels Particle Image Velocimetry (PIV)
- Bestimmung von Flammenposition und -ausdehnung mittels OH*-Chemilumineszenzmessungen oder planarer laserinduzierter Fluoreszenz (OH-PLIF)
- Messung und Analyse der Abgaszusammensetzung
- Erfassung und Auswertung von Temperaturfeldern in der Brennkammer
- Vergleich unterschiedlicher Brennerkonfigurationen (RQL- vs. Magerkonzept)

Engler-Bunte-Institut Verbrennungstechnik (EBI-VBT)

Engler-Bunte-Ring 7 76131 Karlsruhe vbt.ebi.kit.edu

Masterarbeit

Lernziele

Die Arbeit bietet die Möglichkeit, vertiefte Kenntnisse in optischer Messtechnik, Verbrennungsdiagnostik und Datenauswertung zu erwerben und gleichzeitig zur Weiterentwicklung moderner, emissionsarmer Wasserstoffbrenner für Turbinenanwendungen beizutragen.

Hintergrundwissen

Die Masterarbeit richtet sich an Studierende aus den Bereichen Verfahrenstechnik, Chemieingenieurwesen, Maschinenbau oder Physik mit Interesse an Fragestellungen der Verbrennungstechnik und Freude an experimenteller Arbeit.

Datum, Ort

Ab sofort, Campus Süd

Kontakt

Betreuung: M.Sc. Maurus Bauer (maurus.bauer@kit.edu)