Atomization and combustion of elemental sulfur

PEGASUS investigates a novel power cycle for renewable electricity production combining a solar centrifugal particle receiver with a sulphur storage system for baseload operation. The proposed process combines streams of solid particles as heat transfer fluid that can also be used for direct thermal energy storage, with indirect thermochemical storage of solar energy in solid sulphur, rendering thus a solar power plant capable of round-the-clock renewable electricity production.

PEGASUS concept

Sulphur atomization takes place in an airblast nozzle, in which the swirl intensity can be varied. This nozzle is similar to the nozzles that are used in gas turbines and aero engines for the combustion of hydrocarbons. There is a pressure atomizer in the center of the airblast nozzle.

 

Schwefeldüse

Firstly, the sulphur spray should be investigated. For that reason the measurement techniques like PDA (Phase-Doppler Anemometry) and Shadography are applied. They are non invasive measurement methods that can determinate the diameter and velocity of the droplets using laser beam.

Spray measurement using Phase-Doppler Anemometry (PDA)

Mass stream distribution oft he sulphur along the radius. Left side: lower swirl intensity; right side: higher swirl intensity

Sulphur spray in the pressure atomizer vicinity – Shadowgraphy foto

 

After that the suphur is burnt in the air under ambient conditions.

 

Mass stream distribution oft he sulphur along the radius. Left side: lower swirl intensity; right side: higher swirl intensity

 

After that the suphur is burnt in the air under ambient conditions.

Sulphur flame left; right Lifted sulphur flame at λ=2

 

Publikationsliste


Bestimmung der laminaren Brenngeschwindigkeit von Eisenstaub-Luft Flammen
Fedoryk, M.; Stelzner, B.; Harth, S.; Trimis, D.
2023. Jahrestreffen der DECHEMA Fachgruppe Hochtemperaturtechnik, Karlsruher Institut für Technologie (KIT)
Laminar burning velocity measurements and stability map determination of Fe-N2/O2 mixtures in a tube burner
Fedoryk, M.; Stelzner, B.; Harth, S.; Trimis, D.
2023. Proceedings : 11th European Combustion Meeting 2023
Combustion characteristics of iron-air suspensions: reaction zone structures and reaction front speed
Braig, D.; Fedoryk, M. A.; Mich, J.; Harth, S. R.; Stelzner, B.; Scholtissek, A.; Trimis, D.; Hasse, C.
2023. 31. Deutscher Flammentag (2023), Berlin, Germany, September 27–28, 2023
Particle and Phase Analysis of Combusted Iron Particles for Energy Storage and Release
Buchheiser, S.; Deutschmann, M. P.; Rhein, F.; Allmang, A.; Fedoryk, M.; Stelzner, B.; Harth, S.; Trimis, D.; Nirschl, H.
2023. Materials, 16 (5), 2009. doi:10.3390/ma16052009
Experimental investigation of the laminar burning velocity of iron-air flames in a tube burner
Fedoryk, M.; Stelzner, B.; Harth, S.; Trimis, D.
2023. Applications in Energy and Combustion Science, 13, Art.Nr. 100111. doi:10.1016/j.jaecs.2022.100111
Numerical Study on Flame Stabilization and NO Formation in a Novel Burner System for Sulfur Combustion
Zhang, F.; Kurjata, M.; Sebbar, N.; Zirwes, T.; Fedoryk, M.; Harth, S.; Wang, R.; Habisreuther, P.; Trimis, D.; Bockhorn, H.
2022. Energy and Fuels, 36 (7), 4094–4106. doi:10.1021/acs.energyfuels.1c04007
Experimental and numerical investigations of a high-power density sulphur burner
Fedoryk, M.; Zhang, F.; Heidarifatasmi, H.; Sebbar, N.; Harth, S.; Trimis, D.
2020. 12th European Conference on Industrial Furnaces and Boilers (INFUB-12) : 10th and 11th November 2020
Numerical evaluation of a novel double-concentric swirl burner for sulfur combustion
Zhang, F.; Heidarifatasmi, H.; Harth, S.; Zirwes, T.; Wang, R.; Fedoryk, M.; Sebbar, N.; Habisreuther, P.; Trimis, D.; Bockhorn, H.
2020. Renewable & sustainable energy reviews, 133, Art. Nr.: 110257. doi:10.1016/j.rser.2020.110257
Numerical Investigation of a Sulfur Combustor
Zhang, F.; Heidarifatasmi, H.; Harth, S.; Zirwes, T.; Fedoryk, M.; Sebbar, N.; Habisreuther, P.; Trimis, D.; Bockhorn, H.
2019. 29. Deutscher Flammentag (2019), Bochum, Germany, September 17–18, 2019
Numerical simulation of sulfur combustors with high-power-density [in press]
Zhang, F.; Heidarifatasmi, H.; Zirwes, T.; Fedoryk, M.; Harth, S.; Sebbar, N.; Habisreuther, P.; Trimis, D.; Bockhorn, H.
2019. 9th European Combustion Meeting (ECM), Lissabon, Portugal, 14 - 17 April 2019
Numerical simulation of sulfur combustors with high-power-density
Zhang, F.; Heidarifatasmi, H.; Zirwes, T.; Fedoryk, M.; Harth, S.; Sebbar, N.; Habisreuther, P.; Trimis, D.; Bockhorn, H.
2019. 9th European Combustion Meeting (ECM 2019), Lisbon, Portugal, April 14–17, 2019
Entwicklung von Schwefelbrennern mit hohen Leistungsdichten
Fedoryk, M.; Zhang, F.; Heidarifatasmi, H.; Zirwes, T.; Sebbar, N.; Harth, S.; Trimis, D.
2019. Jahrestreffen der ProcessNet-Fachgruppe "Hochtemperaturtechnik" (2019), Karlsruhe, Germany, April 2–3, 2019
Numerische Untersuchung eines Schwefelverbrennungssystem
Zhang, F.; Heidarifatasmi, H.; Harth, S.; Zirwes, T.; Sebbar, N.; Fedoryk, M.; Trimis, D.
2019. 29. Deutscher Flammentag (2019), Bochum, Germany, September 17–18, 2019
Sulfur combustion as closing step in a sulfur based solar-thermal cycle
Sebbar, N.; Harth, S.; Fedoryk, M.; Heidarifatasmi, H.; Zhang, F.; Bozzelli, J. W.; Bockhorn, H.; Trimis, D.
2019. 1st Conference on smart energy carriers (2019), Napoli, Italy, January 21–23, 2019
A new method to compare micro-mixedness results obtained in iodide-iodate method using different reactant concentrations
Fedoryk, M.; Kraut, M.
2017. EYEC Monograph - 6th European Young Engineers Conference, Warszawa, Poland, 24 - 26 April 2017
On the viscosity effect on mixing using a micro cyclone mixer
Kraut, M.; Fedoryk, M.
2017. 10th World Congress of Chemical Engineering, Barcelona, Spain, 1-5 October 2017
A new method to compare micro-mixedness results obtained in iodide-iodate method using different reactant concentrations
Fedoryk, M.; Kraut, M.
2017. EYEC Monograph - 6th European Young Engineers Conference, Warszawa, Poland, 24 - 26 April 2017. Ed.: B. Nowak, 63–78, Faculty of Chemical and Process Engineering (University of Technology)