Reactivity of particles from spark ignition engines: correlations between the particle structure, its optical properties and engine operating parameters

In the course of European exhaust gas legislation, particulate emissions from gasoline engines with direct injection (DE) are a new core topic of engine development. Studies have shown that the mass-related emission limit value can generally be complied with using current engine technology. In contrast, compliance with the maximum permissible particle number concentration represents a major challenge. The reason for the strongly increased nanoscale particle emissions compared to the classic four-stroke gasoline engine with intake manifold injection is the incomplete homogenization of fuel. The result is locally sub-stoichiometric combustion zones which, due to incomplete combustion, favour particle formation. Nevertheless, the technology of gasoline direct injection is to be welcomed in principle, especially for reasons of efficiency and climate protection. However, it is important to reduce particulate emissions in such a way that they remain well below the European exhaust emission limit value and thus protect human health at the same time.

In order to comply with the limit values, the soot particles must therefore be converted with oxidative reactants. This takes place both in the engine cylinder and in the exhaust tract, and finally on the particulate filter. In each of these partial steps, which take place on different time scales and temperature levels, the soot particles undergo an oxidation reaction. The reactivity of soot particles that form at a specific operating point of the DE gasoline engine can be attributed to both their microstructural and nanostructural characteristics. From a large number of measurable particle characteristics, it is necessary to identify those that have a dominant influence on the reactivity behaviour. Subsequently, it is possible to derive particle property-reactivity relationships on the basis of which the reactivity of the particles can be controlled via engine operation.

Within this DFG funded research project, soot samples are taken from a DE research gasoline engine at different operating conditions to determine particle property-reactivity relationships. These will be analysed ex-situ with regard to their reactivity, structure and other properties.

A further aim is to reproduce the properties essential for the reactivity of the soot particles in synthetic model soot particles in order to minimise the effort of generating particles through lengthy and cost-intensive experiments on the engine test bench. In this context, various strategies are being pursued.

The third aim of the project is to detect the reactivity-relevant micro- and nanostructural particle properties in-situ using laser-optical measurement technology. The fast, non-contact, optical detection of reactivity-relevant particle properties offers the possibility to measure the reactivity of particles in small time scales without taking samples. The reactivity of particles is presumably determined by (a) their geometrical, microstructural properties and (b) the nanostructural structure, i.e. the order, orientation and extension of existing graphene layers. For the detection of these particle features, different laser-optical methods are combined. The validation of the measurement technique is carried out using model soot aerosols.

To achieve the goals, an interdisciplinary approach is necessary, which is ensured by three institutes - Institute for Piston Machinery (IFKM), Engler-Bunte Institute / Combustion Technology Division (EBI-VBT), Institute for Technical Chemistry and Polymer Chemistry (ITCP).

 

 

 

Publications


2024
Experimental and numerical investigation on soot formation and evolution of particle size distribution in laminar counterflow ethylene flames
Kalbhor, A.; Schmitz, R.; Ramirez, A.; Vlavakis, P.; Hagen, F. P.; Ferraro, F.; Braun-Unkhoff, M.; Kathrotia, T.; Riedel, U.; Trimis, D.; van Oijen, J.; Hasse, C.; Mira, D.
2024. Combustion and Flame, 260, Art.-Nr.: 113220. doi:10.1016/j.combustflame.2023.113220
Zur Struktur von Kohlenstoffnanopartikeln. PhD dissertation
Hagen, F. P.
2024, January 9. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000166087
2023
Relevance of C/O ratios in the gas-phase synthesis of freestanding few-layer graphene
Fortugno, P.; López-Cámara, C.-F.; Hagen, F.; Wiggers, H.; Schulz, C.
2023. Applications in Energy and Combustion Science, 15, Atkl.Nr.: 100180. doi:10.1016/j.jaecs.2023.100180
On-line monitoring of carbon nanostructure and soot reactivity in engine exhaust by dual-pulse laser-induced incandescence
Hagen, F. P.; Kretzler, D.; Koch, S.; Bockhorn, H.; Suntz, R.; Trimis, D.; Kubach, H.; Velji, A.; Koch, T.
2023. Combustion and Flame, 254, Art.-Nr.: 112850. doi:10.1016/j.combustflame.2023.112850
Linking carbon nanostructure, optical properties, volume fraction, and size distribution of carbon nanoparticles formed in premixed flames
Bauer, M.; Hagen, F.; Kretzler, D.; Schulz, S.; Stelzner, B.; Bockhorn, H.; Suntz, R.; Trimis, D.
2023. 31. Deutscher Flammentag (2023), Berlin, Germany, September 27–28, 2023
Soot nanoparticle sizing in counterflow flames using in-situ particle sampling and differential mobility analysis verified with two-colour time-resolved laser-induced incandescence
Hagen, F. P.; Vlavakis, P.; Seitz, M.; Klövekorn, T.; Bockhorn, H.; Suntz, R.; Trimis, D.
2023. Proceedings of the Combustion Institute, 39 (1), 1119–1128. doi:10.1016/j.proci.2022.07.253
2022
Influence of Global Operating Parameters on the Reactivity of Soot Particles from Direct Injection Gasoline Engines
Koch, S.; Hagen, F. P.; Büttner, L.; Hartmann, J.; Velji, A.; Kubach, H.; Koch, T.; Bockhorn, H.; Trimis, D.; Suntz, R.
2022. Emission Control Science and Technology, 8 (1-2), 9–35. doi:10.1007/s40825-022-00211-y
2021
Influence of Low Ambient Temperatures on the Exhaust Gas and Deposit Composition of Gasoline Engines
Appel, D.; Hagen, F. P.; Wagner, U.; Koch, T.; Bockhorn, H.; Trimis, D.
2021. Journal of energy resources technology, 143 (8), Art.-Nr.: 082306. doi:10.1115/1.4050492
Why Soot is not Alike Soot: A Molecular/Nanostructural Approach to Low Temperature Soot Oxidation
Hagen, F.; Hardock, F.; Koch, S.; Sebbar, N.; Bockhorn, H.; Loukou, A.; Kubach, H.; Suntz, R.; Trimis, D.; Koch, T.
2021. Flow, turbulence and combustion, 106 (2), 295–329. doi:10.1007/s10494-020-00205-2
Nanostructural and morphological characteristics of single soot aggregates during low-temperature oxidation
Hagen, F. P.; Bockhorn, H.; Störmer, H.; Loukou, A.; Suntz, R.; Trimis, D.
2021. Proceedings of the Combustion Institute, 38 (1), 1153–1161. doi:10.1016/j.proci.2020.06.338
2020
Influence of Low Ambient Temperatures on the Exhaust Gas and Deposit Composition of Gasoline Engines
Appel, D.; Hagen, F. P.; Wagner, U.; Koch, T.; Bockhorn, H.; Trimis, D.
2020. ASME 2020 Internal Combustion Engine Division Fall Technical Conference, November 4–6, 2020, The American Society of Mechanical Engineers (ASME). doi:10.1115/ICEF2020-2932
Spark discharge-generated soot: Varying nanostructure and reactivity against oxidation with molecular oxygen by synthesis conditions
Hagen, F. P.; Rinkenburger, A.; Günther, J.; Bockhorn, H.; Niessner, R.; Suntz, R.; Loukou, A.; Trimis, D.; Haisch, C.
2020. Journal of aerosol science, 143, Art.-Nr.: 105530. doi:10.1016/j.jaerosci.2020.105530
Impact of the Injection Strategy on Soot Reactivity and Particle Properties of a GDI Engine
Koch, S.; Kubach, H.; Velji, A.; Koch, T.; Hagen, F. P.; Bockhorn, H.; Loukou, A.; Trimis, D.; Suntz, R.
2020. WCX SAE World Congress Experience, Detroit, April 21-23, 2020. doi:10.4271/2020-01-0392
2019
Reactivity of Particles from Gasoline Direct Injection Engine: Correlation of Engine Parameters and Particle Characteristics
Koch, S.; Hagen, F. P.; Kubach, H.; Velji, A.; Koch, T.; Bockhorn, H.; Loukou, A.; Trimis, D.
2019, June 18. 23rd ETH Conference on Combustion Generated Nanoparticles (2019), Zurich, Switzerland, June 17–20, 2019
Soot particle nanostructure from HRTEM images and reactivity towards oxidation [in press]
Hagen, F.; Hardock, F.; Bockhorn, H.; Loukou, A.; Suntz, R.; Trimis, D.
2019. Proceedings of the European Combustion Meeting – 2019, April 14-17, Lisboa, Portugal, p. S1_R1_90
HRTEM-Bildauswertungsalgorithmus zur Quantifizierung der geometrischen und Nano-Struktur von Rußpartikeln
Hagen, F.; Hardock, F.; Bockhorn, H.; Loukou, A.; Suntz, R.; Trimis, D.
2019. Jahrestreffen der ProcessNet-Fachgruppen "Partikelmesstechnik und Aerosoltechnologie" (2019), Frankfurt am Main, Germany, March 6–7, 2019
Soot Particles: Nanostructure from HRTEM Images, Optical Properties and Reactivity [in press]
Hagen, F.; Hardock, F.; Bockhorn, H.; Loukou, A.; Suntz, R.; Trimis, D.
2019. 11th Mediterranean Combustion Symposium, Tenerife, Spain, 16-20 June 2019
Soot particle nanostructure from HRTEM images and reactivity towards oxidation [in press]
Hagen, F.; Hardock, F.; Bockhorn, H.; Loukou, A.; Suntz, R.; Trimis, D.
2019. 9th European Combustion Meeting 2019, 14 - 17 April, 2019, Lisboa, Portugal - Book of Abstracts. Ed.: S. Pereira, 126, Instituto Superior Técnico
2018
Correlations of reactivity with structural and optical properties of soot particles for application in Gasoline Direct Injection engine exhaust gas aftertreatment
Hagen, F.; Loukou, A.; Vlavakis, P.; Häber, T.; Bockhorn, H.; Suntz, R.; Trimis, D.
2018, August. 37th International Symposium on Combustion (2018), Dublin, Ireland, July 29–August 3, 2018
2017
Comparison of Gasoline Direct-Injection (GDI) and Port Fuel Injection (PFI) Vehicle Emissions: Emission Certification Standards, Cold-Start, Secondary Organic Aerosol Formation Potential, and Potential Climate Impacts
Hagen, F. P.; Saliba, G.; Saleh, R.; Zhao, Y.; Presto, A. A.; Lambe, A. T.; Frodin, B.; Sardar, S.; Maldonado, H.; Maddox, C.; May, A. A.; Drozd, G. T.; Goldstein, A. H.; Russell, L. M.; Robinson, A. L.
2017. Environmental Science & Technology, 51 (11), 6542–6552. doi:10.1021/acs.est.6b06509