O.T.Stein EBI

Prof. Dr. Oliver Thomas Stein

  • Karlsruher Institut für Technologie (KIT)

    Teilinstitut Verbrennungstechnik am Engler-Bunte-Institut

    Engler-Bunte-Ring 7

    76131 Karlsruhe

Scientific focus

Scientific research topics

Prof. Stein leads the numerical research activities of his Chair as detailed here.

Further scientific activities

  • Reviewer for leading international journals in combustion research and related fields, e.g. Combust. Flame, Proc. Combust. Inst., Fuel, Energy & Fuels and others
  • Co-founder and co-organiser of the International Workshop on Clean Solids Conversion (CSC) series
    https://csc.ebi.kit.edu/index.php

Career and Education

   

From

Mainz, Germany
1998-2004 Master programme in Mechanical Engineering, TU Darmstadt, M.Sc (Dipl.-Ing.)
2005-2008 Ph.D. in Combustion Modelling, Imperial College London, UK,  Thermofluids Division

2009

Research Associate, Imperial College London, UK, Thermofluids Division
2010-2020 Akademischer Rat / Lecturer, University of Stuttgart, Institute for Combustion Technology
2020-2022 Akademischer Oberrat / Senior lecturer, University of Stuttgart, Institute for Combustion Technology
since 12/2022 Professor in Simulation of Reacting Thermo-Fluid Systems, Karlsruhe Institute of Technology, Engler-Bunte-Institute

 

Awards and Patents

   
2005 Patent DE10322357A1, O. Stein, J. Stüber, G. Wolf
2005 Hans Blickle Prize for outstanding MSc thesis, SEW-Eurodrive, Bruchsaal, Germany
2009 EPSRC PhD Plus Award for high impact post-doctoral research, EPSRC, UK
2012 Distinguished paper award, 34th Int’l Symp. on Combustion, Combustion Institute for S. Ukai, A. Kronenburg, O.T. Stein, Proc. Combust. Inst. 34:1643-1650 (2013)
2016 Distinguished paper award, 36th Int’l Symp. on Combustion, Combustion Institute for  M. Rieth, A.G. Clements, M. Rabacal, F. Proch, O.T. Stein, A. Kempf, Proc. Combust. Inst. 36:2181-2189 (2017)

 

Publications (up to 2022 journal only)


2024
Carrier-Phase DNS of Ignition and Combustion of Iron Particles in a Turbulent Mixing Layer
Luu, T. D.; Shamooni, A.; Kronenburg, A.; Braig, D.; Mich, J.; Nguyen, B.-D.; Scholtissek, A.; Hasse, C.; Thäter, G.; Carbone, M.; Frohnapfel, B.; Stein, O. T.
2024. Flow, Turbulence and Combustion. doi:10.1007/s10494-023-00526-y
2023
The influence of turbulence on micron-sized iron particle combustion
Thäter, G.; Carbone, M.; Venugopal, V.; Luu, T. D.; Stein, O. T.; Frohnapfel, B.
2023
Assessment of Numerical Accuracy and Parallel Performance of OpenFOAM and its Reacting Flow Extension EBIdnsFoam
Zirwes, T.; Sontheimer, M.; Zhang, F.; Abdelsamie, A.; Pérez, F. E. H.; Stein, O. T.; Im, H. G.; Kronenburg, A.; Bockhorn, H.
2023. Flow, Turbulence and Combustion, 111 (2), 567–602. doi:10.1007/s10494-023-00449-8
Multiple Mapping Conditioning Mixing Time Scales for Turbulent Premixed Flames
Iaroslavtceva, N.; Kronenburg, A.; Stein, O. T.
2023. Flow, Turbulence and Combustion, 110 (2), 395–415. doi:10.1007/s10494-022-00375-1
2022
Coagulation rate coefficients for fractal-like agglomerates in the diffusive and ballistic limits
Karsch, M.; Kronenburg, A.; Stein, O. T.
2022. Chemical Engineering Research and Design, 187, 611–622. doi:10.1016/j.cherd.2022.09.026
Gradient boosted decision trees for combustion chemistry integration
Yao, S.; Kronenburg, A.; Shamooni, A.; Stein, O. T.; Zhang, W.
2022. Applications in Energy and Combustion Science, 11, Art.-Nr.: 100077. doi:10.1016/j.jaecs.2022.100077
Efficient modeling of the filtered density function in turbulent sprays using ensemble learning
Yao, S.; Kronenburg, A.; Stein, O. T.
2022. Combustion and Flame, 237, Art.-Nr.: 111722. doi:10.1016/j.combustflame.2021.111722
PDF mixing time scales for premixed combustion in the laminar flame limit
Iaroslavtceva, N.; Kronenburg, A.; Stein, O. T.
2022. Proceedings of the Combustion Institute, 39 (2), 2249–2258. doi:10.1016/j.proci.2022.09.042
A comparative study of two-phase coupling models for a sparse-Lagrangian particle method
Sontheimer, M.; Kronenburg, A.; Stein, O. T.
2022. Proceedings of the Combustion Institute, 39 (2), 2643–2652. doi:10.1016/j.proci.2022.07.188
Evaluation of ammonia co-firing in the CRIEPI coal jet flame using a three mixture fraction FPV-LES
Meller, D.; Engelmann, L.; Wollny, P.; Tainaka, K.; Watanabe, H.; Debiagi, P.; Stein, O. T.; Kempf, A. M.
2022. Proceedings of the Combustion Institute, 39 (3), 3615–3624. doi:10.1016/j.proci.2022.07.182
Flame structure analysis and flamelet modeling of turbulent pulverized solid fuel combustion with flue gas recirculation
Wen, X.; Shamooni, A.; Nicolai, H.; Stein, O. T.; Kronenburg, A.; Kempf, A. M.; Hasse, C.
2022. Proceedings of the Combustion Institute, 39 (3), 3409–3418. doi:10.1016/j.proci.2022.07.183
Fully-resolved simulations of volatile combustion and NO formation from single coal particles in recycled flue gas environments
Shamooni, A.; Stein, O. T.; Kronenburg, A.; Kempf, A. M.; Debiagi, P.; Li, T.; Dreizler, A.; Böhm, B.; Hasse, C.
2022. Proceedings of the Combustion Institute, 39 (4), 4529–4539. doi:10.1016/j.proci.2022.07.034
Flame characterisation of gas-assisted pulverised coal combustion using FPV-LES
Luu, T. D.; Shamooni, A.; Stein, O. T.; Kronenburg, A.; Popp, S.; Nicolai, H.; Schneider, H.; Wen, X.; Hasse, C.
2022. Proceedings of the Combustion Institute, 39 (3), 3249–3258. doi:10.1016/j.proci.2022.07.080
2021
Grid dependence of evaporation rates in Euler–Lagrange simulations of dilute sprays
Sontheimer, M.; Kronenburg, A.; Stein, O. T.
2021. Combustion and Flame, 232, Art.-Nr.: 111515. doi:10.1016/j.combustflame.2021.111515
Investigation of Turbulent Pulverized Solid Fuel Combustion with Detailed Homogeneous and Heterogeneous Kinetics
Wang, B.; Shamooni, A.; Stein, O. T.; Kronenburg, A.; Kempf, A. M.; Debiagi, P.; Hasse, C.
2021. Energy & Fuels, 35 (9), 7077–7091. doi:10.1021/acs.energyfuels.0c03479
Numerical Analysis of a Turbulent Pulverized Coal Flame Using a Flamelet/Progress Variable Approach and Modeling Experimental Artifacts
Meller, D.; Lipkowicz, T.; Rieth, M.; Stein, O. T.; Kronenburg, A.; Hasse, C.; Kempf, A. M.
2021. Energy & Fuels, 35 (9), 7133–7143. doi:10.1021/acs.energyfuels.0c03477
Carrier-phase DNS of detailed NO formation in early-stage pulverized coal combustion with fuel-bound nitrogen
Shamooni, A.; Debiagi, P.; Wang, B.; Luu, T. D.; Stein, O. T.; Kronenburg, A.; Bagheri, G.; Stagni, A.; Frassoldati, A.; Faravelli, T.; Kempf, A. M.; Wen, X.; Hasse, C.
2021. Fuel, 291, Art.-Nr.: 119998. doi:10.1016/j.fuel.2020.119998
Sparse-Lagrangian PDF Modelling of Silica Synthesis from Silane Jets in Vitiated Co-flows with Varying Inflow Conditions
Neuber, G.; Kronenburg, A.; Stein, O. T.; Garcia, C. E.; Williams, B. A. O.; Beyrau, F.; Cleary, M. J.
2021. Flow, Turbulence and Combustion, 106 (4), 1167–1194. doi:10.1007/s10494-020-00140-2
Mixing Time Scale Models for Multiple Mapping Conditioning with Two Reference Variables
Straub, C.; Kronenburg, A.; Stein, O. T.; Galindo-Lopez, S.; Cleary, M. J.
2021. Flow, Turbulence and Combustion, 106 (4), 1143–1166. doi:10.1007/s10494-020-00188-0
Effects of air and oxy-fuel atmospheres on flamelet modeling of pollutant formation in laminar counterflow solid fuel flames
Wen, X.; Nicolai, H.; Stein, O. T.; Janicka, J.; Kronenburg, A.; Hasse, C.
2021. Fuel, 285, Art.-Nr.: 119079. doi:10.1016/j.fuel.2020.119079
Two-phase sparse-Lagrangian MMC-LES of dilute ethanol spray flames
Kirchmann, J.; Kronenburg, A.; Stein, O. T.; Cleary, M. J.
2021. Proceedings of the Combustion Institute, 38 (2), 3343–3350. doi:10.1016/j.proci.2020.05.009
Conditional scalar dissipation rate modeling for turbulent spray flames using artificial neural networks
Yao, S.; Wang, B.; Kronenburg, A.; Stein, O. T.
2021. Proceedings of the Combustion Institute, 38 (2), 3371–3378. doi:10.1016/j.proci.2020.06.135
Detailed analysis of early-stage NO formation in turbulent pulverized coal combustion with fuel-bound nitrogen
Wen, X.; Shamooni, A.; Stein, O. T.; Cai, L.; Kronenburg, A.; Pitsch, H.; Kempf, A. M.; Hasse, C.
2021. Proceedings of the Combustion Institute, 38 (3), 4111–4119. doi:10.1016/j.proci.2020.06.317
Two-phase coupling for MMC-LES of spray combustion
Sontheimer, M.; Kronenburg, A.; Stein, O. T.
2021. Proceedings of the Combustion Institute, 38 (2), 3361–3369. doi:10.1016/j.proci.2020.06.107
Large eddy simulation of Cambridge bluff-body coal (CCB2) flames with a flamelet progress variable model
Xing, J.; Luo, K.; Chen, Y.; Stein, O. T.; Kronenburg, A.; Luo, K. H.; Hasse, C.; Fan, J.
2021. Proceedings of the Combustion Institute, 38 (4), 5347–5354. doi:10.1016/j.proci.2020.08.020
Numerical Investigation of Spray Collapse in GDI with OpenFOAM
Gärtner, J. W.; Feng, Y.; Kronenburg, A.; Stein, O. T.
2021. Fluids, 6 (3), Art.-Nr.: 104. doi:10.3390/fluids6030104
2020
Modeling of sub-grid conditional mixing statistics in turbulent sprays using machine learning methods
Yao, S.; Wang, B.; Kronenburg, A.; Stein, O. T.
2020. Physics of Fluids, 32 (11), Art.-Nr.: 115124. doi:10.1063/5.0027524
Analysis of Gas-Assisted Pulverized Coal Combustion in Cambridge Coal Burner CCB1 Using FPV-LES
Chen, Y.; Stein, O. T.; Kronenburg, A.; Xing, J.; Luo, K.; Luo, K. H.; Hasse, C.
2020. Energy & Fuels, 34 (6), 7477–7489. doi:10.1021/acs.energyfuels.0c00317
A comprehensive study of flamelet tabulation methods for pulverized coal combustion in a turbulent mixing layer—Part II: Strong heat losses and multi-mode combustion
Wen, X.; Rieth, M.; Scholtissek, A.; Stein, O. T.; Wang, H.; Luo, K.; Kronenburg, A.; Fan, J.; Hasse, C.
2020. Combustion and Flame, 216, 453–467. doi:10.1016/j.combustflame.2019.12.028
A comprehensive study of flamelet tabulation methods for pulverized coal combustion in a turbulent mixing layer — Part I: A priori and budget analyses
Wen, X.; Rieth, M.; Scholtissek, A.; Stein, O. T.; Wang, H.; Luo, K.; Kempf, A. M.; Kronenburg, A.; Fan, J.; Hasse, C.
2020. Combustion and Flame, 216, 439–452. doi:10.1016/j.combustflame.2019.05.046
2019
Multi-dimensional and transient effects on flamelet modeling for turbulent pulverized coal combustion
Wen, X.; Stein, O. T.; Tufano, G. L.; Kronenburg, A.; Scholtissek, A.; Hasse, C.
2019. Fuel, 255, Art.-Nr.: 115772. doi:10.1016/j.fuel.2019.115772
Flamelet tabulation methods for solid fuel combustion with fuel-bound nitrogen
Wen, X.; Debiagi, P.; Stein, O. T.; Kronenburg, A.; Kempf, A. M.; Hasse, C.
2019. Combustion and Flame, 209, 155–166. doi:10.1016/j.combustflame.2019.07.039
A two-phase MMC-LES model for pyrolysing solid particles in a turbulent flame
Zhao, L.; Cleary, M. J.; Stein, O. T.; Kronenburg, A.
2019. Combustion and Flame, 209, 322–336. doi:10.1016/j.combustflame.2019.08.005
Sparse-Lagrangian MMC modelling of the Sandia DME flame series
Neuber, G.; Fuest, F.; Kirchmann, J.; Kronenburg, A.; Stein, O. T.; Galindo-Lopez, S.; Cleary, M. J.; Barlow, R. S.; Coriton, B.; Frank, J. H.; Sutton, J. A.
2019. Combustion and Flame, 208, 110–121. doi:10.1016/j.combustflame.2019.06.026
Modelling Sub-Grid Passive Scalar Statistics in Moderately Dense Evaporating Sprays
Wang, B.; Kronenburg, A.; Stein, O. T.
2019. Flow, Turbulence and Combustion, 103 (2), 519–535. doi:10.1007/s10494-019-00024-0
Fully-resolved simulations of coal particle combustion using a detailed multi-step approach for heterogeneous kinetics
Tufano, G. L.; Stein, O. T.; Kronenburg, A.; Gentile, G.; Stagni, A.; Frassoldati, A.; Faravelli, T.; Kempf, A. M.; Vascellari, M.; Hasse, C.
2019. Fuel, 240, 75–83. doi:10.1016/j.fuel.2018.11.139
Evaluation of a flamelet/progress variable approach for pulverized coal combustion in a turbulent mixing layer
Rieth, M.; Kempf, A. M.; Stein, O. T.; Kronenburg, A.; Hasse, C.; Vascellari, M.
2019. Proceedings of the Combustion Institute, 37 (3), 2927–2934. doi:10.1016/j.proci.2018.05.150
Modeling stratified flames with and without shear using multiple mapping conditioning
Straub, C.; Kronenburg, A.; Stein, O. T.; Barlow, R. S.; Geyer, D.
2019. Proceedings of the Combustion Institute, 37 (2), 2317–2324. doi:10.1016/j.proci.2018.07.033
Joint experimental and numerical study of silica particulate synthesis in a turbulent reacting jet
Neuber, G.; Garcia, C. E.; Kronenburg, A.; Williams, B. A. O.; Beyrau, F.; Stein, O. T.; Cleary, M. J.
2019. Proceedings of the Combustion Institute, 37 (1), 1213–1220. doi:10.1016/j.proci.2018.06.074
2018
Coal particle volatile combustion and flame interaction. Part II: Effects of particle Reynolds number and turbulence
Tufano, G. L.; Stein, O. T.; Wang, B.; Kronenburg, A.; Rieth, M.; Kempf, A. M.
2018. Fuel, 234, 723–731. doi:10.1016/j.fuel.2018.07.054
Coal particle volatile combustion and flame interaction. Part I: Characterization of transient and group effects
Tufano, G. L.; Stein, O. T.; Wang, B.; Kronenburg, A.; Rieth, M.; Kempf, A. M.
2018. Fuel, 229, 262–269. doi:10.1016/j.fuel.2018.02.105
Multiple mapping conditioning coupled with an artificially thickened flame model for turbulent premixed combustion
Straub, C.; Kronenburg, A.; Stein, O. T.; Kuenne, G.; Janicka, J.; Barlow, R. S.; Geyer, D.
2018. Combustion and Flame, 196, 325–336. doi:10.1016/j.combustflame.2018.05.021
A stochastic multiple mapping conditioning computational model in OpenFOAM for turbulent combustion
Galindo-Lopez, S.; Salehi, F.; Cleary, M. J.; Masri, A. R.; Neuber, G.; Stein, O. T.; Kronenburg, A.; Varna, A.; Hawkes, E. R.; Sundaram, B.; Klimenko, A. Y.; Ge, Y.
2018. Computers & Fluids, 172, 410–425. doi:10.1016/j.compfluid.2018.03.083
A two-phase MMC–LES model for turbulent spray flames
Khan, N.; Cleary, M. J.; Stein, O. T.; Kronenburg, A.
2018. Combustion and Flame, 193, 424–439. doi:10.1016/j.combustflame.2018.03.023
MMC-LES of a syngas mixing layer using an anisotropic mixing time scale model
Vo, S.; Kronenburg, A.; Stein, O. T.; Cleary, M. J.
2018. Combustion and Flame, 189, 311–314. doi:10.1016/j.combustflame.2017.11.004
2017
MMC-LES modelling of droplet nucleation and growth in turbulent jets
Neuber, G.; Kronenburg, A.; Stein, O. T.; Cleary, M. J.
2017. Chemical Engineering Science, 167, 204–218. doi:10.1016/j.ces.2017.04.008
A flamelet/progress variable approach for modeling coal particle ignition
Vascellari, M.; Tufano, G. L.; Stein, O. T.; Kronenburg, A.; Kempf, A. M.; Scholtissek, A.; Hasse, C.
2017. Fuel, 201, 29–38. doi:10.1016/j.fuel.2016.09.005
Assessment of mixing time scales for a sparse particle method
Vo, S.; Stein, O. T.; Kronenburg, A.; Cleary, M. J.
2017. Combustion and Flame, 179, 280–299. doi:10.1016/j.combustflame.2017.02.017
LES-CMC of a Partially Premixed, Turbulent Dimethyl Ether Jet Diffusion Flame
Kronenburg, A.; Stein, O. T.
2017. Flow, Turbulence and Combustion, 98 (3), 803–816. doi:10.1007/s10494-016-9788-4
Flamelet LES modeling of coal combustion with detailed devolatilization by directly coupled CPD
Rieth, M.; Clements, A. G.; Rabaçal, M.; Proch, F.; Stein, O. T.; Kempf, A. M.
2017. Proceedings of the Combustion Institute, 36 (2), 2181–2189. doi:10.1016/j.proci.2016.06.077
Assessment of scaling laws for mixing fields in inter-droplet space
Wang, B.; Kronenburg, A.; Dietzel, D.; Stein, O. T.
2017. Proceedings of the Combustion Institute, 36 (2), 2451–2458. doi:10.1016/j.proci.2016.06.036
Multiple mapping conditioning for silica nanoparticle nucleation in turbulent flows
Vo, S.; Kronenburg, A.; Stein, O. T.; Cleary, M. J.
2017. Proceedings of the Combustion Institute, 36 (1), 1089–1097. doi:10.1016/j.proci.2016.08.088
2016
Resolved flow simulation of pulverized coal particle devolatilization and ignition in air- and O/CO-atmospheres
Tufano, G. L.; Stein, O. T.; Kronenburg, A.; Frassoldati, A.; Faravelli, T.; Deng, L.; Kempf, A. M.; Vascellari, M.; Hasse, C.
2016. Fuel, 186, 285–292. doi:10.1016/j.fuel.2016.08.073
2015
Large eddy simulation of dilute acetone spray flames using CMC coupled with tabulated chemistry
Ukai, S.; Kronenburg, A.; Stein, O. T.
2015. Proceedings of the Combustion Institute, 35 (2), 1667–1674. doi:10.1016/j.proci.2014.06.013
Imaging measurements and LES-CMC modeling of a partially-premixed turbulent dimethyl ether/air jet flame
Coriton, B.; Zendehdel, M.; Ukai, S.; Kronenburg, A.; Stein, O. T.; Im, S.-K.; Gamba, M.; Frank, J. H.
2015. Proceedings of the Combustion Institute, 35 (2), 1251–1258. doi:10.1016/j.proci.2014.06.042
LES of swirl-stabilised pulverised coal combustion in IFRF furnace No. 1
Olenik, G.; Stein, O. T.; Kronenburg, A.
2015. Proceedings of the Combustion Institute, 35 (3), 2819–2828. doi:10.1016/j.proci.2014.06.149
2014
Simulation of Dilute Acetone Spray Flames with LES-CMC Using Two Conditional Moments
Ukai, S.; Kronenburg, A.; Stein, O. T.
2014. Flow, Turbulence and Combustion, 93 (3), 405–423. doi:10.1007/s10494-014-9565-1
Comparison of the Sigma and Smagorinsky LES models for grid generated turbulence and a channel flow
Rieth, M.; Proch, F.; Stein, O. T.; Pettit, M. W. A.; Kempf, A. M.
2014. Computers & Fluids, 99, 172–181. doi:10.1016/j.compfluid.2014.04.018
Evaluation of scale resolving turbulence generation methods for Large Eddy Simulation of turbulent flows
Dietzel, D.; Messig, D.; Piscaglia, F.; Montorfano, A.; Olenik, G.; Stein, O. T.; Kronenburg, A.; Onorati, A.; Hasse, C.
2014. Computers & Fluids, 93, 116–128. doi:10.1016/j.compfluid.2014.01.013
A posteriori testing of the flame surface density transport equation for LES
Ma, T.; Stein, O. T.; Chakraborty, N.; Kempf, A. M.
2014. Combustion Theory and Modelling, 18 (1), 32–64. doi:10.1080/13647830.2013.848383
2013
Towards Comprehensive Coal Combustion Modelling for LES
Stein, O. T.; Olenik, G.; Kronenburg, A.; Cavallo Marincola, F.; Franchetti, B. M.; Kempf, A. M.; Ghiani, M.; Vascellari, M.; Hasse, C.
2013. Flow, Turbulence and Combustion, 90 (4), 859–884. doi:10.1007/s10494-012-9423-y
LES-CMC of a dilute acetone spray flame
Ukai, S.; Kronenburg, A.; Stein, O. T.
2013. Proceedings of the Combustion Institute, 34 (1), 1643–1650. doi:10.1016/j.proci.2012.05.023
A posteriori testing of algebraic flame surface density models for LES
Ma, T.; Stein, O. T.; Chakraborty, N.; Kempf, A. M.
2013. Combustion Theory and Modelling, 17 (3), 431–482. doi:10.1080/13647830.2013.779388
2012
LES of lifted flames in a gas turbine model combustor using top-hat filtered PFGM chemistry
Olbricht, C.; Stein, O. T.; Janicka, J.; van Oijen, J. A.; Wysocki, S.; Kempf, A. M.
2012. Fuel, 96, 100–107. doi:10.1016/j.fuel.2012.01.018
2011
Highly-resolved LES and PIV Analysis of Isothermal Turbulent Opposed Jets for Combustion Applications
Stein, O. T.; Böhm, B.; Dreizler, A.; Kempf, A. M.
2011. Flow, Turbulence and Combustion, 87 (2-3), 425–447. doi:10.1007/s10494-010-9310-3
Quality Issues in Combustion LES
Kempf, A. M.; Geurts, B. J.; Ma, T.; Pettit, M. W. A.; Stein, O. T.
2011. Journal of Scientific Computing, 49 (1), 51–64. doi:10.1007/s10915-011-9481-7
Large Eddy Simulation of non-reacting gas flow in a 40 MW pulverised coal combustor
Stein, O. T.; Kempf, A. M.; Ma, T.; Olbricht, C.; Duncan, A.; Lewis, G. D.
2011. Progress in Computational Fluid Dynamics, An International Journal, 11 (6), 397–402. doi:10.1504/PCFD.2011.042849
2010
In-Nozzle Measurements of a Turbulent Opposed Jet Using PIV
Böhm, B.; Stein, O. T.; Kempf, A.; Dreizler, A.
2010. Flow, Turbulence and Combustion, 85 (1), 73–93. doi:10.1007/s10494-010-9257-4
2008
Large Eddy Simulations of Swirling Non-premixed Flames With Flamelet Models: A Comparison of Numerical Methods
Kempf, A.; Malalasekera, W.; Ranga-Dinesh, K. K. J.; Stein, O. T.
2008. Flow, Turbulence and Combustion, 81 (4), 523–561. doi:10.1007/s10494-008-9147-1
2007
LES of the Sydney swirl flame series: An initial investigation of the fluid dynamics
Stein, O. T.; Kempf, A. M.; Janicka, J.
2007. Combustion Science and Technology, 179 (1-2), 173–189. doi:10.1080/00102200600808581
LES of the Sydney swirl flame series: A study of vortex breakdown in isothermal and reacting flows
Stein, O. T.; Kempf, A.
2007. Proceedings of the Combustion Institute, 31 (2), 1755–1763. doi:10.1016/j.proci.2006.07.255