Development of reaction mechanisms with parameter identification of subsystems

Computational Method All of the calculations are performed using the Gaussian 03 program suite, which calculates the total energies, the frequencies and moment of inertia. The determination of the entropies and heat capacities are calculated with the help of two codes: SMCPS and ROTATOR.

 Main Objectives

Application of computational quantum chemistry (ab inito and DFT calculations) is used to estimation of thermochemical properties and kinetic parameters of small and large species, including biochemicals, large aromatic intermediates in soot formation, carbon nanotubes and many other systems.

 Introduction

Aromatic and poly-aromatic compounds are important components of fuels. They are also formed in pyrolysis reactions and in fuel rich regions of flames and other thermal systems, where they are considered important precursors and intermediates in soot and PAH formation. The decomposition products of these species in combustion and oxidation reactions involve the incorporation of oxygen through reactions with oxygenated radicals and with molecular oxygen forming species like hydroperoxides or unsaturated oxy-hydrocarbon.

This work involves the development of an extensive thermochemical property data base on unsaturated (olefinic, acetylenic and aromatic) oxygenated hydrocarbon chemical species: enthalpy of formation, bond energies, standard entropy and heat capacity data as a function of temperature are calculated. These data serves the modelling communities in the area of atmospheric chemistry, combustion, industrial processes relating to synthesis and use in synthesis of hydroperoxides, peroxides and peroxy radical species. These parameters are available over a wide range of temperature (200 to over 5000 K) which can be applied to all of the above areas.

Peroxides and peroxy species are perhaps the most important intermediates in all low and moderate (1200 – 1300 K) combustion and in atmospheric photochemical oxidation processes of hydrocarbons and derivatives. Examples of the importance of these peroxides and peroxy intermediates include: control of self ignition in internal combustion engines (knock in spark ignited engines plus fuel ignition in diesels and in the new and upcoming HCCI engines. The peroxy radical reaction chemistry also controls the negative temperature behavior of hydrocarbons where there is a competition between the complex chain branching paths and termination reactions. Alkyl hydroperoxide species are also important in limiting soot formation and in soot burn-out in hydrocarbon pyrolysis and combustion.

A very significant quantity of thermochemical parameters are generated for stable molecules, intermediate radicals and transition state structures of oxygenated hydrocarbon molecules, particularly unsaturated and aromatic carbon – oxygen systems.

 Example of Work

One example of oxidative destructive in aromatics involves conversion of dibenzofurans and / or dioxins in combustion systems. The destruction of the aromatic moiety often starts with loss of a phenyl hydrogen, through abstraction by radical pool species, such as H, O, OH, or Cl, forming a phenyl or benzofuranyl radical. This occurs even at moderate temperatures in downstream zones of an incinerator. The phenyl radicals will rapidly react with molecular oxygen in the combustion environment to form an energized (phenyl peroxy) adduct,  which can undergo further reaction through several pathways. Figure 1 illustrates some of the intermediate products from decomposition reactions (beta scission (unzipping) and oxidation) of a benzofuran di-aldehyde formal radical, which is estimated is the major product from reaction of molecular oxygen with a dibenzofuran – phenyl radical. The decomposition reaction results in a number of intermediates and radical products, which do not have thermochemistry or groups for use in group additivity estimations. Knowledge of the thermochemical properties of these species is important to understanding the decomposition and oxidation pathways of these intermediates, which result from initial oxidative ring opening of the aromatics.

For such larger molecules, high level, calculation techniques are computationally expensive or not possible. Density Functional Theory may be one of the few applicable calculation methods for these large molecules systems.

 

 

 

Computational Method

All of the calculations are performed using the Gaussian 03 program suite, which calculates the total energies, the frequencies and moment of inertia. The determination of the entropies and heat capacities are calculated with the help of two codes: SMCPS and ROTATOR.

 

 

Publikationen


Experimental and numerical investigations of a high-power density sulphur burner.
Fedoryk, M.; Zhang, F.; Heidarifatasmi, H.; Sebbar, N.; Harth, S.; Trimis, D.
2020. 12th European Conference on Industrial Furnaces and Boilers (INFUB-12) : 10th and 11th November 2020
Why Soot is not Alike Soot: A Molecular/Nanostructural Approach to Low Temperature Soot Oxidation.
Hagen, F.; Hardock, F.; Koch, S.; Sebbar, N.; Bockhorn, H.; Loukou, A.; Kubach, H.; Suntz, R.; Trimis, D.; Koch, T.
2021. Flow, turbulence and combustion, 106 (2), 295–329. doi:10.1007/s10494-020-00205-2
Numerical evaluation of a novel double-concentric swirl burner for sulfur combustion.
Zhang, F.; Heidarifatasmi, H.; Harth, S.; Zirwes, T.; Wang, R.; Fedoryk, M.; Sebbar, N.; Habisreuther, P.; Trimis, D.; Bockhorn, H.
2020. Renewable & sustainable energy reviews, 133, Art. Nr.: 110257. doi:10.1016/j.rser.2020.110257
Thermochemical Study of Reactions Occuring in the S-N-O System [in press].
Sebbar, N.; Bozzelli, J. W.; Bockhorn, H.; Trimis, D.
2019. Proceedings of the Eleventh Mediterranean Combustion Symposium - MCS11, June, 16-20, Tenerife, Spain, S1_AII_10
Thermochemical study for species and reactions occurring in the S-N-O system [in press].
Sebbar, N.; Bozzelli, J. W.; Bockhorn, H.; Trimis, D.
2019. Proceedings of the European Combustion Meeting – 2019, April 14-17, Lisboa, Portugal, S1_AII_10
Pyrene + O2: primary reactions, reaction pathways, and influence of functional groups [in press].
Sebbar, N.; Bockhorn, H.; Trimis, D.
2019. Proceedings of the European Combustion Meeting – 2019, April 14-17, Lisboa, Portugal, S2_R1_83
Numerical Investigation of a Sulfur Combustor.
Zhang, F.; Heidarifatasmi, H.; Harth, S.; Zirwes, T.; Fedoryk, M.; Sebbar, N.; Habisreuther, P.; Trimis, D.; Bockhorn, H.
2019. 29. Deutscher Flammentag (2019), Bochum, Germany, September 17–18, 2019
Numerical simulation of sulfur combustors with high-power-density [in press].
Zhang, F.; Heidarifatasmi, H.; Zirwes, T.; Fedoryk, M.; Harth, S.; Sebbar, N.; Habisreuther, P.; Trimis, D.; Bockhorn, H.
2019. 9th European Combustion Meeting (ECM), Lissabon, Portugal, 14 - 17 April 2019
Ignition behaviour of sulfur in air based on modified reaction kinetics [in press].
Zirwes, T.; Sebbar, N.; Habisreuther, P.; Harth, S.; Zhang, F.; Bockhorn, H.; Trimis, D.
2019. 11th Mediterranean Combustion Symposium (MCS11), Tenerife, Spain, 16-20 June 2019
Numerical simulation of sulfur combustors with high-power-density.
Zhang, F.; Heidarifatasmi, H.; Zirwes, T.; Fedoryk, M.; Harth, S.; Sebbar, N.; Habisreuther, P.; Trimis, D.; Bockhorn, H.
2019. 9th European Combustion Meeting (ECM 2019), Lisbon, Portugal, April 14–17, 2019
Entwicklung von Schwefelbrennern mit hohen Leistungsdichten.
Fedoryk, M.; Zhang, F.; Heidarifatasmi, H.; Zirwes, T.; Sebbar, N.; Harth, S.; Trimis, D.
2019. Jahrestreffen der ProcessNet-Fachgruppe "Hochtemperaturtechnik" (2019), Karlsruhe, Germany, April 2–3, 2019
Numerische Untersuchung eines Schwefelverbrennungssystem.
Zhang, F.; Heidarifatasmi, H.; Harth, S.; Zirwes, T.; Sebbar, N.; Fedoryk, M.; Trimis, D.
2019. 29. Deutscher Flammentag (2019), Bochum, Germany, September 17–18, 2019
Sulfur combustion as closing step in a sulfur based solar-thermal cycle.
Sebbar, N.; Harth, S.; Fedoryk, M.; Heidarifatasmi, H.; Zhang, F.; Bozzelli, J. W.; Bockhorn, H.; Trimis, D.
2019. 1st Conference on smart energy carriers (2019), Napoli, Italy, January 21–23, 2019
Thermochemistry and kinetics of the 2-butanone-4-yl CHC(=O)CHCH• + O reaction system.
Sebbar, N.; Bozzelli, J. W.; Trimis, D.; Bockhorn, H.
2019. International journal of chemical kinetics, 51 (8), 541–562. doi:10.1002/kin.21276
Investigation of S2 + Air Combustion.
Sebbar, N.; Zirwes, T.; Habisreuther, P.; Bockhorn, H.; Trimis, D.
2018. Proceedings of Joint Meeting of the German and Italian Sections of the Combustion Institute, Sorrento, Italy, May 23-26, 2018. Ed.: H. Bockhorn, VI10, Associazione Sezione Italiana del Combustion Institute (ASICI)
A thermochemical study on the primary oxidation of sulfur.
Sebbar, N.; Bozzelli, J. W.; Bockhorn, H.; Trimis, D.
2019. Combustion science and technology, 191 (1), 163–177. doi:10.1080/00102202.2018.1455134
Investigation of S₂ + Air combustion.
Sebbar, N.; Zirwes, T.; Habisreuther, P.; Bockhorn, H.; Trimis, D.
2018. Joint Meeting of the German and Italian Sections of the Combustion Institute (2018), Sorrento, Italy, May 23–26, 2018
Investigation of S₂ + Air combustion.
Sebbar, N.; Zirwes, T.; Habisreuther, P.; Bockhorn, H.; Trimis, D.
2018. Joint Meeting German and Italian Sections of the Combustion Institute, 41st Meeting of the Italian Section of The Combustion Institute, Sorrento, I, May 23-26, 2018. Proceedings. Ed.: H. Bockhorn, Article VI10, ASICI
S₂ + Air Combustion: Reaction Kinetics, Flame Structure, and Laminar Flame Behavior.
Sebbar, N.; Zirwes, T.; Habisreuther, P.; Bozzelli, J. W.; Bockhorn, H.; Trimis, D.
2018. Energy & fuels, 32 (10), 10184–10193. doi:10.1021/acs.energyfuels.8b01019
Di-tertiary-butyl Peroxide Decomposition and Combustion with Air: Reaction Mechanism, Ignition, Flame Structures, and Laminar Flame Velocities.
Sebbar, N.; Habisreuther, P.; Bockhorn, H.; Auzmendi-Murua, I.; Bozzelli, J. W.
2017. Energy & fuels, 31 (3), 2260–2273. doi:10.1021/acs.energyfuels.6b02201
Thermochemistry and kinetics for 2-butanone-1-yl radical.
Sebbar, N.; Bozzelli, J. W.; Bockhorn, H.
2014. Journal of Physical Chemistry A, 118, 21–37. doi:10.1021/jp408708u
Large Eddy Simulation of DTBP Pool Fires.
Zhang, F.; Sebbar, N.; Auzmendi-Murua, I.; Habisreuther, P.; Zhang, L.; Bockhorn, H.
2013. Impulse für die Zukunft der Energie : wissenschaftliche Beiträge des KIT zur 2. Jahrestagung des KIT-Zentrums Energie, Doktorandensymposium, 13.06.2013. Hrsg.: W. Breh, 103–108, KIT Scientific Publishing
Thermochemistry and Kinetics for 2-Butanone-3yl Radical (CH3C(=O)CH*CH3) Reactions with O2.
Sebbar, N.; Bozzelli, J. W.; Bockhorn, H.
2011. Zeitschrift für physikalische Chemie, 225 (9-10), 993–1018. doi:10.1524/zpch.2011.0144
Reactivity, Thermochemistry and kinetics of 2-Butanone Radicals: CH2*C(=O)CHCH3, CH3C(=O)CH*CH3 and CH3C(=O)CH2CH2*.
Sebbar, N.; Bozzelli, J. W.; Bockhorn, H.
2011. Proceedings of the 7th Mediterranean Combustion Symposium (MCS’11), Sardinia, Italy, September 11-15, 2011
Thermochemistry and Kinetics for 2-Butanone-3yl Radical (CH3C(=O)CH*CH3) Reactions with O2.
Sebbar, N.; Bockhorn, H.; Bozzelli, J. W.
2011. Proceedings of the 5th European Combustion Meeting (ECM’11),Cardif, United Kingdom, June 29 - July 1, 2011
A Kinetic Study of the C6H5C*(=O) O2 Reaction.
Sebbar, N.; Bozzelli, J. W.; Bockhorn, H.
2011. Proceedings of the 7th International Conference on Chemical Kinetics, Cambridge, Massachusetts/USA, July 10-14, 2011
Thermochemistry and Reaction Paths in the Oxidation Reaction of Benzoyl Radical: C6H5C*(=O).
Sebbar, N.; Bozzeli, J. W.; Bockhorn, H.
2011. Journal of Physical Chemistry A, 115 (42), 11897–11914. doi:10.1021/jp2078067
Thermochemical Properties for Hydrogenated and Oxy-hydrogenated Aluminium Species.
Sebbar, N.; Rutz, L.; Bockhorn, H.
2012. Soft materials, 10 (1-3), 313–343. doi:10.1080/1539445X.2011.599728
Numerical Study of the Zirconium Oxide System.
Sebbar, N.; Rutz, L.; Finke, T.; Bockhorn, H.
2012. Soft materials, 10 (1-3), 344–368. doi:10.1080/1539445X.2011.599730
Surface Chemical Characterization of Ceramic Material - Adsorption and Thermal Desorption of Ethanol on nano-ZrO2.
Finke, T.; Eisele, U.; Sebbar, N.; Rutz, L.; Bockhorn, H.
2009. Ceramic Forum International: cfi / Berichte der Deutschen Keramischen Gesellschaft, 86, 7–12
The oxidation reaction of C6H5C.(=O) radical.
Sebbar, N.; Bozzelli, J. W.; Bockhorn, H.
2009. Sixth Mediterranean Combustion Symposium - MCS6, Ajaccio, Corsica, France, June 7-11
Thermodynamic Properties of the Species Resulting from the Phenyl Radical with O2 Reaction System.
Sebbar, N.; Bockhorn, H.; Bozzelli, J. W.
2008. International journal of chemical kinetics, 40, 583–604
Thermochemical similarities among three reaction systems:Vinyl O2 - Phenyl O2 - Dibenzofuranyl O2.
Sebbar, N.; Bockhorn, H.; Bozzelli, J. W.
2008. Combustion Science and Technology, 180, 959–974
Oxidation von Ethylbenzol an einem V-Mo-P- Mischoxid-Katalysator.
Sebbar, N.; Haid, M.; Griesbaum, K.
1995. In: Wissenschaftliche Abschlußberichte. 30. Internationales Seminar für Forschung und Lehre in Chemieingenieurwesen, Technischer und Physikalischer Chemie an der Universität Karlsruhe (TH) 1995. Karlsruhe 1995. S. 100-111