Numerische Berechnung von Verbrennungslärm

Diese Seite befindet sich noch im Aufbau

Bisherige Arbeiten zur VOF-Simulation der Primärzerstäubung durch den ehemaligen Kollegen Thomas Müller

Video Gallerie

 

» Large Eddy Simulation (LES) turbulenter Verbrennung

  • Turbulente Strömung und Flammenausbreitung durch 8 rotierende Ventilatoren innerhalb des Explosionsbehälters unter erhöhten Druckbedingungen

 

Geometry and computational mesh with 8 rotating fans and local refinement

 

Grid of the ventilator surface and a slice across the fan

 

LES of turbulent flow generated by rotating ventilators

 

Contours of velocity and vorticity on a slice across the rotating fan.

 

Velocity (top) and vorticity (bottom) fields calculated by LES with moving fans at different pressure conditions: 1 bar (left), 2 bar (middle) and 5 bar (right). Increasing pressure leads to generation of smaller turbulence structures.

 

LES of ignition process of a methane/air mixture at ϕ = 0.9 and T0 = 300 K under turbulent flow conditions generated by rotating fans (5000 rpm) within the bomb vessel at different pressures: 1 bar (left) and 2 bar (right)

 

Time evolution of 3D flame surfaces (top) and 2D contours of temperature (bottom) by LES of ignition of a methane/air mixture at 1 bar (left), 2 bar (middle) and 5 bar (right).

 
  • Lean-premixed, highly turbulent natural gas/air combustion at preheated condition (Matrix Flame)

Overall simulation illustrated by contours of temperature and axial flow velocity : non-reactive flow → ignition → flame propagation → Extinction

 

Contours of axial velocity and vorticity illustrating strong turbulent inflow generated at the inlet boundary and its interaction with the flame front

 

Effect of the inflow turbulence on the flame length: LES without (left) and with (right) prescribed turbulence at inlet

Streamwise velocity used at the inlet boundary

 
  • Partially premixed methane/air combustion in a vitiated coflow (Cabra Flame)

Overall simulation : mixing of cold main jet with hot coflow → ignition → Stabilization at lift-off height. From left to right are contours of streamwise velocity, mixture fraction, temperature, mass fraction of OH and reaction progress variable

 
  • Non-premixed H2/air combustion (Sandia H3 Flame)

Flame surface is illustrated by the iso-contour of stoichiometric mixture fraction; horizontal line indicates measured length of flame

 
  • Magere vorgemischte Erdgas-Luft-Verbrennung, stabilisiert durch einen doppelt konzentrischen Drallbrenner (GCN)

    • Bender, C. and Büchner, H. (2005): Noise emissions from a premixed swirl combustor, Twelfth International Congress on Sound and Vibration, Lisbon.
    • Habisreuther, P., Bender, C., Petsch, O., Büchner, H. and Bockhorn, H. (2006): Prediction of pressure oscillations in a premixed swirl combustor flow and comparison to measurements, Flow Turb. Comb.77, 147-160.

Swirl-stabilized combustion with a recessed pilot lance & without confinement. From left to right and top to bottom are contours of streamwise velocity, vorticity, temperature and progress variable. The inner recirculation zone moves back and forth into the burner

 

Isoterm of T = 1500 K and iso-contour of u = - 1 m/s

 

Swirl-stabilized combustion with a planar pilot lance and a combustion chamber, other boundary conditions are remained the same

 
  • DTBP Auftriebsflamme in Einfach- und Mehrfachanordnung (Poolflamme)

     

Development of a DTBP buoyant flame in single pool arrangement: from left to right are contours of streamwise velocity, mixture fraction, temperature and reaction progress variable

 

Iso-surface of reaction rate and temperature

 

DTBP pool flame in multiple arrangement. Merging of single pool flames to a large fire

 
  • Vorgemischte Erdgas-/Luftstrahlflamme, die mit einem generischen Brenner betrieben wird

     

Moderately turbulent partially-premixed flame with generation of large coherent flow structures which interact with the flame: from left to right are contours of temperature, heat release rate, reaction rate and mass fraction of chemiluminescent OH species

 

Isoterm of T = 500 K: evolution of the flame with the coherent vortices leads to formation of a hazelnut-shaped structure of the flame surface

 

» Direkte numerische Simulation (DNS) der Verbrennung

  • Ungespannte planare vorgemischte Flammen (1D)

Freely propagating methane/air flame: ϕ = 1.0, T0 = 300 K, p0 = 1 atm. The flame is ignited by a heating source within the domain. The result has shown a good agreement with the computational data obtained with the commercial code Chemkin.

  • Instationäre/oszillierende gestreckte Flammen (2D)

 

 
 

Harmonically excited plane-jet hydrogen/air flames with different frequencies and the same amplitude: ϕ = 0.5, unstable region with Le<1, Ma<0. The flame responds faster to the unsteady flow at low frequencies and tends to form instabilities at higher frequencies. At very high frequencies the flame's response is attenuated again.

 

Harmonically excited hydrogen/air flames with different frequencies and the same amplitude: ϕ = 0.8, neutral range with Le ≈ 1, Ma ≈ 0.

 

 

 

Harmonically excited hydrogen/air flames with different frequencies and the same amplitude: ϕ = 6.5, stable range with Le > 1, Ma > 0.

 
  • Sphärische Flammenausbreitung in einem geschlossenen Bombenschiff (3D)

     

DNS of spherically expanding H2/air flame at ϕ = 0.4 fora 3D grid with 144 million grid cells, the flame surface becomes unstable at large flame radii due to thermo-diffusive instability (Le<1). The DNS has been run in parallel with 8192 CPU cores on the Cray-XC40 platform from HLRS.

 

Isoterm of T = 1100 K showing collapse of the spherical flame surface into unstable, cellular structure.

 

Vector-plots of velocity field generated by the spherically expanding flame.

 

Contours of heat release rate: DNS of spherical propagating flame with a dynamically refined mesh.

 
  • Synthetische Methan-/Luftflammen bei unterschiedlichen Turbulenzbedingungen (3D)

     

Synthetical flame front subjected to a turbulent inflow. Case I: the flame is convected by the flow to the outside of the computational domain.

 

Interaction of turbulent flow with flame. The flame front is illustrated with isotherm of T = 1500 K and structures of the vortices are depicted by iso-surfaces of the vorticity.

 

Case II: the inflow conditions are adjusted to let the flame propagate within the computational domain. From left to right are cases with different turbulent Reynolds numbers of Ret = 15, 69 and 123. The cubic domain of 1 cm3 has been discretized equidistantly with 64 million finite volumes. The used reaction mechanism for methane/air combustion contains 19 species and 69 elementary reactions.

 
  • DNS eines generischen Brennersystems (3D)

Contours of resolved temperature and heat release rate (left). Comparison of contours of heat release rate and OH* mass fraction (right).

 
 
 

Zoomed flame tip region showing resolution of the flame front by the DNS

 
 

» Acoustic modeling

  • Komprimierbares DNS des Trompetenflusses

 

 

Temporal evolution of acoustic pressure generated in the trumpet (till 1 m).

 
  • Verbrennungsinstabilitäten durch Wirbelbrenner

     

 

Combustion instabilities caused by Helmholtz resonators, standing waves and vortex shedding.

 
 

Oscillation of temperature and flow fields caused by combustion instability.

 
 

Combustion instability caused by coherent flow structure (left) and helical structures visualized by iso-surface of pressure (right).

 

Aero-acoustic (left) and combustion generated (right) noise sources derived from Lighthill's acoustic analogy.

 

Acoustic sources given by the time derivative of the density.

 
  • Direktes Verbrennungsgeräusch

     

 

Propagation of acoustic waves from a turbulent premixed flame (compressible LES). The wave fronts are indicated by isocontours of the pressure.

 
 
 

Reflection of pressure waves at the opening boundaries in the case of using a small computational domain.

 

Acoustic noise sources derived from compressible LES of turbulent premixed combustion: aero-acoustic (left) and combustion (middle) noise sources obtained from Lighthilll's analogy and acoustic source caused by time fluctuation of heat release (right).

 
 

Publikationen

 
2020

 
2019

 
2018

 
2017

 
2016

  • Feichi Zhang; Thorsten Zirwes; Peter Habisreuther; Henning Bockhorn; Holger Nawroth; Christian Oliver Paschereit; (2016). Vortrag: LES and DNS of Combustion and Combustion Generated Noise. 2nd Colloquium Combustion Dynamics and Noise, Villa Vigoni, Menaggio, Italy, Sept. 19-22,

  • F. Zhang; T. Zirwes; P. Habisreuther; H. Bockhorn; Numerical Simulation of Turbulent Combustion with a Multi-Regional Approach. In High Performance Computing in Science and Engineering ´15, Nagel, Wolfgang E.; Kröner, Dietmar H.; Resch, Michael M. (ed.), Springer International Publishing, Cham, p. 267–280, (doi:10.1007/978-3-319-24633-8_18) 2016.

  • F. Zhang; T. Zirwes; P. Habisreuther; H. Bockhorn; Poster: Identification of Correlation between OH* Chemiluminescence and Heat Release Rate with Direct Numerical Simulation. NIC Symposium 2016, 11-12 February 2016, Forschungszentrum Jülich, 2016.

  • Q. Zhao; F. Zhang; L. Zhang; H. Bockhorn; W. Xu; L. Liu, (2016). Multi-Regional Large Eddy Simulation of Turbulent Combustion. Journal of Propulsion Technology, 37, (2), 324 – 331.(doi:10.13675/j.cnki.tjjs.2016.02.017)

  • Zirwes, T.; Zhang, F.; Habisreuther, P.; Bockhorn, H.; (2016). Vortrag: A DNS Analysis of the Correlation of Heat Release Rate with Chemiluminescence Emissions in Turbulent Combustion. 19th Results and Review Workshop of the HLRS, Stuttgart, Deutschland, 13.–14. Oktober,

  • Zirwes, Thorsten; Zhang, Feichi; Habisreuther, Peter; Bockhorn, Henning; Poster: Flame Response to Unsteady Stretching. 36th International Symposium on Combustion, Seoul, Korea, July 31.-August 5., 36, 2016.

 
2015

 
2014

 
2013

 
2012

 
2011

 
2010

 
2009

 
2008

 
2007

Numerische Berechnung von Verbrennungslärm

Werdegang

Born on 16 June 1981 in Beijing, China

   
2000-2005 Diploma in Mechanical Engineering/Technical University Dresden (TUD), Germany
2005-2006 Scientific staff at Institute of Fluid Machinery, University Karlsruhe (TH), Germany
2006-2013 Scientific staff at Engler-Bunte Institute/Division of Combustion Technology, Karlsruhe Institute of Technology (KIT), Germany
2013 Ph.D. in Chemical and Process Engineering, Karlsruhe Institute of Technology (KIT), Germany
2013-present Scientific staff/Postdoc at Engler-Bunte Institute/Division of Combustion Technology, Karlsruhe Institute of Technology (KIT), Germany

 

Forschungsgebiet

Large eddy simulation (LES) and direct numerical simulation (DNS) of turbulent combustion; Coupled Eulerian-Lagrangigan modeling of spray combustion; Volume of fluid (VOF) simulation of primary atomization process; Dynamics of stretched flamelets; Modeling of combustion generated noise; Combustion instabilities; High performance computing

Video Gallery

» Large Eddy Simulation (LES) of turbulent combustion

  • Turbulent flow and flame propagation generated by 8 rotating fans within the explosion vessel under elevated pressure condition

Movie 1 + 2

Geometry and computational mesh with 8 rotating fans and local refinement

 

Movie 3

Grid of the ventilator surface and a slice across the fan

 

Movie 4

LES of turbulent flow generated by rotating ventilators

 

Movie 5

Contours of velocity and vorticity on a slice across the rotating fan.

 

Movie 6

Velocity (top) and vorticity (bottom) fields calculated by LES with moving fans at different pressure conditions: 1 bar (left), 2 bar (middle) and 5 bar (right). Increasing pressure leads to generation of smaller turbulence structures.

 

Movie 7 + 8

LES of ignition process of a methane/air mixture at ϕ = 0.9 and T0 = 300 K under turbulent flow conditions generated by rotating fans (5000 rpm) within the bomb vessel at different pressures: 1 bar (left) and 2 bar (right)

 

 

Movie 9

Time evolution of 3D flame surfaces (top) and 2D contours of temperature (bottom) by LES of ignition of a methane/air mixture at 1 bar (left), 2 bar (middle) and 5 bar (right).

  • Lean-premixed, highly turbulent natural gas/air combustion at preheated condition (Matrix Flame

Movie 10

Overall simulation illustrated by contours of temperature and axial flow velocity : non-reactive flow → ignition → flame propagation → Extinction

 

Movie 11

Contours of axial velocity and vorticity illustrating strong turbulent inflow generated at the inlet boundary and its interaction with the flame front

 

Movie 12 + 13

Effect of the inflow turbulence on the flame length: LES without (left) and with (right) prescribed turbulence at inlet

Streamwise velocity used at the inlet boundary

 

  • Partially premixed methane/air combustion in a vitiated coflow (Cabra Flame)

Movie 14

Overall simulation : mixing of cold main jet with hot coflow → ignition → Stabilization at lift-off height. From left to right are contours of streamwise velocity, mixture fraction, temperature, mass fraction of OH and reaction progress variable

 

  • Non-premixed H2/air combustion (Sandia H3 Flame)

Movie 15

Flame surface is illustrated by the iso-contour of stoichiometric mixture fraction; horizontal line indicates measured length of flame

 

  • Lean-premixed natural gas/air combustion stabilized by a double-concentric swirl burner (GCN)

    • Bender, C. and Büchner, H. (2005): Noise emissions from a premixed swirl combustor, Twelfth International Congress on Sound and Vibration, Lisbon.
    • Habisreuther, P., Bender, C., Petsch, O., Büchner, H. and Bockhorn, H. (2006): Prediction of pressure oscillations in a premixed swirl combustor flow and comparison to measurements, Flow Turb. Comb.77, 147-160.

 

Movie 16

Swirl-stabilized combustion with a recessed pilot lance & without confinement. From left to right and top to bottom are contours of streamwise velocity, vorticity, temperature and progress variable. The inner recirculation zone moves back and forth into the burner

 

Movie 17

Isoterm of T = 1500 K and iso-contour of u = - 1 m/s

 

Movie 18

Swirl-stabilized combustion with a planar pilot lance and a combustion chamber, other boundary conditions are remained the same

 

 

 

 

  • DTBP buoyant flame in single and multiple arrangement (Pool flame)

 

Publikationen


Impact of carbon dioxide and nitrogen addition on the global structure of hydrogen flames
Eckart, S.; Pio, G.; Zirwes, T.; Zhang, F.; Salzano, E.; Krause, H.; Bockhorn, H.
2023. Fuel, 335, Art.-Nr.: 126929. doi:10.1016/j.fuel.2022.126929
Correlation of heat loss with quenching distance during transient flame-wall Interaction
Zhang, F.
2022, Juli. 39th International Symposium on Combustion (2022), Vancouver, Kanada, 24.–29. Juli 2022
Implementation and Validation of a Computationally Efficient DNS Solver for Reacting Flows in OpenFOAM
Zirwes, T.; Zhang, F.; Habisreuther, P.; Denev, J.; Bockhorn, H.; Trimis, D.
2021. 14th WCCM-ECCOMAS Congress 2020: Collection of papers presented at the 14th edition of the WCCM-ECCOMAS, virtual congress, January, 11-15, 2021. Ed.: F. Chinesta, Scipedia S.L. doi:10.23967/wccm-eccomas.2020.175
Turbulent flame-wall interaction of premixed flames using Quadrature-based Moment Methods (QbMM) and tabulated chemistry: An a priori analysis
Steinhausen, M.; Zirwes, T.; Ferraro, F.; Popp, S.; Zhang, F.; Bockhorn, H.; Hasse, C.
2022. International Journal of Heat and Fluid Flow, 93, Art.-Nr.: 108913. doi:10.1016/j.ijheatfluidflow.2021.108913
Implementation and Validation of a Computationally Efficient DNS Solver for Reacting Flows in OpenFOAM
Zirwes, T.; Zhang, F.; Habisreuther, P.; Denev, J. A.; Bockhorn, H.; Trimis, D.
2021. 14th World Congress on Computational Mechanics (WWCM 2020) - 8th European Congress on Computational Methods in Applie Sciences (ECCOMAS 2020) (2021), Online, 11.–15. Januar 2021
DNS of Near Wall Dynamics of Premixed CH4/Air Flames
Zhang, F.; Zirwes, T.; Häber, T.; Bockhorn, H.; Trimis, D.; Suntz, R.
2021. 14th World Congress on Computational Mechanics (WWCM 2020) - 8th European Congress on Computational Methods in Applie Sciences (ECCOMAS 2020) (2021), Online, 11.–15. Januar 2021
Implementation of Lagrangian Surface Tracking for High Performance Computing
Zirwes, T.; Zhang, F.; Denev, J. A.; Habisreuther, P.; Bockhorn, H.; Trimis, D.
2020. 23rd High Performance Computing in Science & Engineering - High Performance Computing in Science & Engineering - Results and Review Workshop of the HLRS, 8 - 9 Oktober 2020
Lagrangian Tracking of Material Surfaces in reacting Flows
Zirwes, T.; Zhang, F.; Denev, J. A.; Habisreuther, P.; Bockhorn, H.; Trimis, D.
2020. The 15th OpenFOAM Workshop
Implementation of an Efficient Synthetic Inflow Turbulence-Generator in the Open-Source Code OpenFOAM for 3D LES/DNS Applications
Galeazzo, F. C. C.; Zhang, F.; Zirwes, T.; Habisreuther, P.; Bockhorn, H.; Zarzalis, N.; Trimis, D.
2020. 23rd High Performance Computing in Science & Engineering - High Performance Computing in Science & Engineering - Results and Review Workshop of the HLRS (2020), Online, 8.–9. Oktober 2020
Numerical evaluation of a novel double-concentric swirl burner for sulfur combustion
Zhang, F.; Heidarifatasmi, H.; Harth, S.; Zirwes, T.; Wang, R.; Fedoryk, M.; Sebbar, N.; Habisreuther, P.; Trimis, D.; Bockhorn, H.
2020. Renewable & sustainable energy reviews, 133, Art. Nr.: 110257. doi:10.1016/j.rser.2020.110257
Quasi-DNS of the Partially Premixed Sydney Flame
Zirwes, T.; Zhang, F.; Habisreuter, P.; Bockhorn, H.; Trimis, D.
2019. Simulation of reactive Thermo-Fluid Systems (STFS 2019), Darmstadt, Deutschland, 22. September 2019
Effect of Transient Flame Stretch
Zirwes, T.; Zhang, F.; Habisreuther, P.; Bockhorn, H.; Trimis, D.
2019. Simulation of reactive Thermo-Fluid Systems (STFS 2019), Darmstadt, Deutschland, 22. September 2019
Numerical Investigation of a Sulfur Combustor
Zhang, F.; Heidarifatasmi, H.; Harth, S.; Zirwes, T.; Fedoryk, M.; Sebbar, N.; Habisreuther, P.; Trimis, D.; Bockhorn, H.
2019. 29. Deutscher Flammentag (2019), Bochum, Deutschland, 17.–18. September 2019
Quasi-DNS Dataset of a Piloted Flame with Inhomogeneous Inlet Conditions
Zirwes, T.; Zhang, F.; Habisreuther, P.; Hansinger, M.; Bockhorn, H.; Pfitzner, M.; Trimis, D.
2020. Flow, turbulence and combustion, 104, 997–1027. doi:10.1007/s10494-019-00081-5
Unsteady pure straining effects on lean premixed flames of different Lewis numbers
Denev, J. A.; Naydenova, I.; Zhang, F.; Zirwes, T.; Bockhorn, H.
2019. 9th European Combustion Meeting (ECM), Lissabon, Portugal, 14 - 17 April 2019
2D and 3D numerical simulation of chemiluminescent radical concentrations during side-wall quenching of premixed methane and propane flames [in press]
Zirwes, T.; Häber, T.; Zhang, F.; Kosaka, H.; Bockhorn, H.; Suntz, R.; Dreizler, A.; Janicka, J.
2019. 9th European Combustion Meeting (ECM), Lissabon, Portugal, 14 - 17 April 2019
Numerical simulation of sulfur combustors with high-power-density [in press]
Zhang, F.; Heidarifatasmi, H.; Zirwes, T.; Fedoryk, M.; Harth, S.; Sebbar, N.; Habisreuther, P.; Trimis, D.; Bockhorn, H.
2019. 9th European Combustion Meeting (ECM), Lissabon, Portugal, 14 - 17 April 2019
Numerical Simulation of Turbulent Flame Propagation in a Fan-Stirred Combustion Bomb at Elevated Pressures [in press]
Zhang, F.; Zirwes, T.; Habisreuther, P.; Zarzalis, N.; Bockhorn, H.; Trimis, D.
2019. 27th International Colloquium on the Dynamics of Explosions and Reactive Systems, Beijing, China, 8th July - 2nd August 2019
Large-Scale Quasi-DNS of Mixed-Mode Turbulent Combustion [in press]
Zirwes, T.; Zhang, F.; Habisreuther, P.; Bockhorn, H.; Trimis, D.
2019. 90th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM), Vienna, Austria, February 18-22, 1019. Ed.: J. Eberhardsteiner, TU Verlag
Ignition behaviour of sulfur in air based on modified reaction kinetics [in press]
Zirwes, T.; Sebbar, N.; Habisreuther, P.; Harth, S.; Zhang, F.; Bockhorn, H.; Trimis, D.
2019. 11th Mediterranean Combustion Symposium (MCS11), Tenerife, Spain, 16-20 June 2019
Large-Scale Quasi-DNS of Mixed-Mode Turbulent Combustion
Zirwes, T.; Zhang, F.; Denev, J. A.; Habisreuther, P.; Bockhorn, H.; Trimis, D.
2019. 90th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2019), Wien, Österreich, 18.–22. Februar 2019
2D and 3D numerical simulation of chemiluminescent radical concentrations during side-wall quenching of premixed methane and propane flames
Zirwes, T.; Häber, T.; Zhang, F.; Kosaka, H.; Bockhorn, H.; Suntz, R.; Dreizler, A.; Janicka, J.
2019. 9th European Combustion Meeting (ECM 2019), Lissabon, Portugal, 14.–17. April 2019
Numerical simulation of sulfur combustors with high-power-density
Zhang, F.; Heidarifatasmi, H.; Zirwes, T.; Fedoryk, M.; Harth, S.; Sebbar, N.; Habisreuther, P.; Trimis, D.; Bockhorn, H.
2019. 9th European Combustion Meeting (ECM 2019), Lissabon, Portugal, 14.–17. April 2019
Unsteady pure straining effects on lean premixed flames of different Lewis numbers
Denev, J. A.; Naydenova, I.; Zhang, F.; Zirwes, T.; Bockhorn, H.
2019. 9th European Combustion Meeting (ECM 2019), Lissabon, Portugal, 14.–17. April 2019
LES of Combustion Noise from a Turbulent Premixed Jet Flame
Zhang, F.; Zirwes, T.; Habisreuther, P.; Bockhorn, H.; Trimis, D.
2019. 17th International Conference on Numerical Combustion (2019), Aachen, Deutschland, 6.–8. Mai 2019
Spectral response of heat release in LES combustion modeling
Zhang, F.; Zirwes, T.; Habisreuther, P.; Bockhorn, H.; Trimis, D.
2019. 17th International Conference on Numerical Combustion (2019), Aachen, Deutschland, 6.–8. Mai 2019
Implementation of Flame Particle Tracking for Studying Laminar and Turbulent Flame Dynamics
Zirwes, T.; Zhang, F.; Habisreuther, P.; Denev, J. A.; Bockhorn, H.; Trimis, D.
2019. 17th International Conference on Numerical Combustion (2019), Aachen, Deutschland, 6.–8. Mai 2019
Numerical Simulation of Turbulent Flame Propagation in a Fan-Stirred Combustion Bomb at Elevated Pressures
Zhang, F.; Zirwes, T.; Habisreuther, P.; Zarzalis, N.; Bockhorn, H.; Trimis, D.
2019. 27th International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS 2019), Peking, China, 28. Juli–2. August 2019
Analysis of Thermoacoustic Sources of Lean Premixed Flames
Pausch, K.; Herff, S.; Zhang, F.; Bockhorn, H.; Schröder, W.
2019. International Workshop on Clean Combustion: Principles and Applications (2019), Darmstadt, Deutschland, 25.–26. September 2019
Identification of Flame Regimes in Partially Premixed Combustion from a Quasi-DNS Dataset [in press]
Zirwes, T.; Zhang, F.; Hansinger, M.; Bockhorn, H.; Pfitzner, M.; Trimis, D.
2019. International Workshop on Clean Combustion: Principles and Applications (2019), Darmstadt, Deutschland, 25.–26. September 2019
Improved Vectorization for Efficient Chemistry Computations in OpenFOAM for Large Scale Combustion Simulations
Zirwes, T.; Zhang, F.; Denev, J. A.; Habisreuther, P.; Bockhorn, H.; Trimis, D.
2019. High Performance Computing in Science and Engineering ’18 - Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2018. Ed.: W. E. Nagel, 209–224, Springer International Publishing
Numerical and experimental investigation of chemiluminescent radical concentrations during side-wall quenching [in press]
Zirwes, T.; Häber, T.; Zhang, F.; Steinhausen, M.; Kosaka, H.; Bockhorn, H.; Suntz, R.; Hasse, C.; Dreizler, A.
2019. International Workshop on “Clean Combustion: Principles and Applications”, Darmstadt, Germany, September 25 - 26, 2019
Sulfur combustion as closing step in a sulfur based solar-thermal cycle
Sebbar, N.; Harth, S.; Fedoryk, M.; Heidarifatasmi, H.; Zhang, F.; Bozzelli, J. W.; Bockhorn, H.; Trimis, D.
2019. 1st Conference on smart energy carriers (2019), Napoli, Italien, 21.–23. Januar 2019
Automated Code Generation for Maximizing Performance of Detailed Chemistry Calculations in OpenFOAM
Zirwes, T.; Zhang, F.; Habisreuther, P.; Denev, J. A.; Bockhorn, H.
2018. Innovatives Supercomputing in Deutschland, 16 (1), 54–58
Optimized Chemistry and Detailed Transport for Massively Parallel Simulations of Turbulent Combustion with OpenFOAM
Zirwes, T.; Zhang, F.; Denev, J. A.; Habisreuther, P.; Bockhorn, H.; Trimis, D.
2018. The 13th OpenFOAM Workshop (OFW13), Shanghai, China, June 24-29 2018. Ed.: J. Wang
Optimizing Load Balancing of Reacting Flow Solvers in OpenFOAM for High Performance Computing
Zirwes, T.; Zhang, F.; Habisreuther, P.; Denev, J. A.; Bockhorn, H.; Trimis, D.
2018. 6th ESI OpenFOAM User Conference 2018, Hamburg, 23.-25. Oktober 2018, 1–13, ESI Group
Improved Vectorization for Efficient Chemistry Computations in OpenFOAM for Large Scale Combustion Simulations
Zirwes, T.; Zhang, F.; Denev, J. A.; Habisreuther, P.; Bockhorn, H.; Trimis, D.
2018. High Performance Computing in Science & Engineering : 21th Results and Review Workshop of the HLRS, Stuttgart, October 4-5, 2018
Response of Local and Global Consumption Speed to Stretch in Laminar Steady-State Flames
Zirwes, T.; Zhang, F.; Denev, J. A.; Habisreuther, P.; Bockhorn, H.; Zarzalis, N.
2017. 8th European Combustion Meeting, Dubrovnik, HR, April 18-21, 2017
Large Eddy Simulation of Turbulent Flow in a Fan-stirred Combustion Vessel
Zhang, F.; Zirwes, T.; Habisreuther, P.; Zarzalis, N.; Trimis, D.; Bockhorn, H.
2018. Joint Meeting of the German and Italian Sections of the Combustion Institute (2018), Sorrent, Italien, 23.–26. Mai 2018
Einfluss von erhöhtem Druck auf die Änderung der 549 Flammendynamik durch Streckung in vorgemischten Flammen
Zirwes, T.; Zhang, F.; Denev, J. A.; Habisreuther, P.; Bockhorn, H.; Zarzalis, N.
2017. 28. Deutscher Flammentag (2017), Darmstadt, Deutschland, 6.–7. September 2017
Einfluss von erhöhtem Druck auf die Änderung der 549 Flammendynamik durch Streckung in vorgemischten Flammen
Zirwes, T.; Zhang, F.; Denev, J. A.; Habisreuther, P.; Bockhorn, H.; Zarzalis, N.
2017. Verbrennung und Feuerung : 28. Deutscher Flammentag 2017, Darmstadt, Germany, 6th - 7th September 2017, 549–562, VDI Verlag
Large Eddy Simulation of Turbulent Flow in a Fan-stirred Combustion Vessel
Zhang, F.; Zirwes, T.; Habisreuther, P.; Zarzalis, N.; Trimis, D.; Bockhorn, H.
2018. Joint Meeting German and Italian Sections of the Combustion Institute, 41st Meeting of the Italian Section of The Combustion Institute, Sorrento, I, May 23-26, 2018. Proceedings. Ed.: H. Bockhorn, Article I10, ASICI
Response of Local and Global Consumption Speed to Stretch in Laminar Steady-State Flames
Zirwes, T.; Zhang, F.; Denev, J. A.; Habisreuther, P.; Bockhorn, H.; Zarzalis, N.
2017. Proceedings of the 8th European Combustion Meeting, Dubrovnik, HR, April 18-21, 2017. Ed.: N. Duic
Effect of unsteady stretching on the flame local dynamics
Zhang, F.; Zirwes, T.; Habisreuther, P.; Bockhorn, H.
2017. Combustion and flame, 175, 170–179. doi:10.1016/j.combustflame.2016.05.028
Thermoacoustics of a turbulent premixed flame
Geiser, G.; Hosseinzadeh, A.; Nawroth, H.; Zhang, F.; Bockhorn, H.; Habisreuther, P.; Janicka, J.; Paschereit, C. O.; Schroeder, W.
2014. 20th AIAA/CEAS Aeroacoustics Conference 2014 : Atlanta, Georgia, USA, 16 - 20 June 2014; held at the AIAA Aviation Forum 2014, Vol. 1., 745–759, Curran
Impact of Grid Refinement on Turbulent Combustion and Combustion Noise Modeling with Large Eddy Simulation
Zhang, F.; Bonart, H.; Habisreuther, P.; Bockhorn, H.
2013. High performance computing in science and engineering ’13 : transactions of the High Performance Computing Center, Stuttgart (HLRS) 2013. [Konferenz]. Ed.: W. E. Nagel, 259–274, Springer. doi:10.1007/978-3-319-02165-2__19
On Prediction of Combustion Generated Noise with the Turbulent Heat Release Rate
Zhang, F.; Habisreuther, P.; Bockhorn, H.; Nawroth, H.; Paschereit, C. O.
2013. Acta Acustica united with Acustica, 99 (6), 940–951. doi:10.3813/AAA.918673
Direct Numerical Simulations of Turbulent Combustion with OpenFOAM
Zhang, F.; Bonart, H.; Habisreuther, P.; Bockhorn, H.
2013. Verbrennung und Feuerung : 26. Deutscher Flammentag; Duisburg, 11. und 12. September 2013 [Konferenz], 867–872, VDI Verlag
Large Eddy Simulation of DTBP Pool Fires
Zhang, F.; Sebbar, N.; Auzmendi-Murua, I.; Habisreuther, P.; Zhang, L.; Bockhorn, H.
2013. Impulse für die Zukunft der Energie : wissenschaftliche Beiträge des KIT zur 2. Jahrestagung des KIT-Zentrums Energie, Doktorandensymposium, 13.06.2013. Hrsg.: W. Breh, 103–108, KIT Scientific Publishing
On Prediction of Combustion Generated Noise with help of Direct Numerical Simulation [Vortrag]
Zhang, F.; Bonart, H.; Habisreuther, P.; Bockhorn, H.
2013. EUROMECH Colloquium Combustion Dynamics and Combustion Noise, Menaggio, Italy, May 13-16, 2013
Application of the Unified Turbulent Flame-Speed Closure (UTFC) Combustion Model to Numerical Computation of Turbulent Gas Flames
Zhang, F.; Habisreuther, P.; Bockhorn, H.
2013. High Performance Computing in Science and Engineering ’12 Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2012, Part IV. [Konferenz]. Ed.: W. E. Nagel, 187–205, Springer Verlag. doi:10.1007/978-3-642-33374-3_16
Flow Investigation and Acoustic Measurements of an Unconfined Turbulent Premixed Jet Flame
Nawroth, H.; Paschereit, C. O.; Zhang, F.; Habisreuther, P.; Bockhorn, H.
2013. 43rd AIAA Fluid Dynamics Conference and Exhibit, San Diego, California/USA, June 24-27, 2013, 2013–2459. doi:10.2514/6.2013-2459
Numerical simulation of noise emission from a non-premixed flame
Zhang, F.; Habisreuther, P.; Hettel, M.; Bockhorn, H.
2011. Gaswärme international, 2011 (3), 1–6
A newly developed unified TFC combustion model for numerical simulation of turbulent gas flames
Zhang, F.; Habisreuther, P.; Hettel, M.; Bockhorn, H.
2011. 25. Deutscher Flammentag - Verbrennung und Feuerungen - Karlsruhe, 14.-15. September 2011, 177–182, VDI Fachmedien
Impact of grid refinement on combustion noise prediction
Zhang, F.; Geiser, G.; Habisreuther, P.; Bockhorn, H.; Schröder, W.
2012. Proceedings of the 9th European Fluid Mechanics Conference (EFMC’12), Rome, Italy, September 9-13, 2012
Numerical computation of combustion induced noise using compressible LES and hybrid CFD/CAA methods
Zhang, F.; Habisreuther, P.; Hettel, M.; Bockhorn, H.
2012. Acta Acustica united with Acustica, 98 (1), 120–134. doi:10.3813/AAA.918498
Experimental and Numerical Investigation of a Turbulent Premixed Flame in an Anechoic Environment
Nawroth, H.; Saurabh, A.; Paschereit, C. O.; Zhang, F.; Habisreuther, P.; Bockhorn, H.
2012. Proceedings of the 42nd AIAA Fluid Dynamics Conference and Exhibit, New Orleans/USA, June 25-28, 2012
Application of a Unified TFC Model to Numerical Simulation of a Turbulent Non-Premixed Flame
Zhang, F.; Habisreuther, P.; Hettel, M.; Bockhorn, H.
2010. Proceedings of the 8th International ERCOFTAC Symposium on Engineering Turbulence Modelling and Measurements - ETMM8. Vol. 2, European Research Collaboration on Flow Turbulence and Combustion, ERCOFTAC, June, 9-11, Marseilles, France, 681–686, Marseilles
Measurement and Simulation of Combustion Noise emitted from Swirl Burners
Bender, C.; Zhang, F.; Habisreuther, P.; Büchner, H.; Bockhorn, H.
2009. Combustion Noise. Ed.: A. Schwarz, 33–62, Springer Verlag. doi:10.1007/978-3-642-02038-4_2
Numerical Investigations of the Noise Sources Generated in a Swirl Stabilized Flame
Zhang, F.; Habisreuther, P.; Hettel, M.; Bockhorn, H.
2009. Acta Acustica united with Acustica, 95 (3), 418–427. doi:10.3813/AAA.918166
Modelling of a Premixed Swirl-stabilized Flame Using a Turbulent Flame Speed Closure Model in LES
Zhang, F.; Habisreuther, P.; Hettel, M.; Bockhorn, H.
2009. Flow, Turbulence and Combustion, 82 (4), 537–551. doi:10.1007/s10494-008-9175-x
Numerical investigations of the noise sources generated in a swirl stabilized flame
Zhang, F.; Habisreuther, P.; Hettel, M.; Bockhorn, H.
2008. Fortschritte der Akustik - DAGA 08, 34. Jahrestagung für Akustik, DAGA ’08, 10. - 13. März 2008, Dresden [Konferenz]
LES of reactive flow in a strongly swirling combustor system
Zhang, F.; Habisreuther, P.; Bockhorn, H.
2008. 2nd International Conference on Jets, Wakes and Separated Flows, September 16-19 2008, Berlin